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Abstract

Recent findings indicate that over-parametrization,

while crucial for successfully training deep neural net-

works, also introduces large amounts of redundancy. Ten-

sor methods have the potential to efficiently parametrize

over-complete representations by leveraging this redun-

dancy. In this paper, we propose to fully parametrize Con-

volutional Neural Networks (CNNs) with a single high-

order, low-rank tensor. Previous works on network ten-

sorization have focused on parametrizing individual lay-

ers (convolutional or fully connected) only, and perform

the tensorization layer-by-layer separately. In contrast, we

propose to jointly capture the full structure of a neural net-

work by parametrizing it with a single high-order tensor,

the modes of which represent each of the architectural de-

sign parameters of the network (e.g. number of convolu-

tional blocks, depth, number of stacks, input features, etc).

This parametrization allows to regularize the whole net-

work and drastically reduce the number of parameters. Our

model is end-to-end trainable and the low-rank structure

imposed on the weight tensor acts as an implicit regular-

ization. We study the case of networks with rich structure,

namely Fully Convolutional Networks (FCNs), which we

propose to parametrize with a single 8th–order tensor. We

show that our approach can achieve superior performance

with small compression rates, and attain high compression

rates with negligible drop in accuracy for the challenging

task of human pose estimation.

1. Introduction

For a wide range of challenging tasks, including recog-

nition [22, 34, 13], detection [32], semantic segmentation

[25, 12] and human pose estimation [26], the state-of-the-art

is currently attained with Convolutional Neural Networks

(CNNs). There is evidence that a key feature behind the suc-

cess of these methods is over-parametrization, which helps
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find good local minima [11, 35]. However, at the same time,

over-parametrization leads to a great amount of redundancy,

and from a statistical perspective, it might hinder general-

ization because it excessively increases the number of pa-

rameters. Furthermore, models with an excessive number

of parameters have increased storage and computation re-

quirements, rendering them problematic for deployment on

devices with limited computational resources. This paper

focuses on a novel way of leveraging the redundancy in the

parameters of CNNs by jointly parametrizing the whole net-

work using tensor methods.

There is a significant amount of recent work on using

tensors to reduce the redundancy and improve the efficiency

of CNNs, mostly focusing on re-parametrizing individual

layers. For example, [36, 17] treat a convolutional layer as a

4D tensor and then compute a decomposition of the 4D ten-

sor into a sum of a small number of low-rank tensors. Sim-

ilarly, [27] proposes tensorizing the fully-connected layers.

The bulk of these methods focus on tensorizing individual

layers only, and perform the tensorization layer-by-layer

disjointly, usually by applying a tensor decomposition to

the pre-trained weights and then fine-tuning to compensate

for the performance loss. For example, [36] tensorizes the

second convolutional layer of AlexNet [22].

Our paper primarily departs from prior work by using

a single high-order tensor to parametrize the whole CNN

as opposed to using different tensors to parametrize the in-

dividual layers. In particular, we propose to parametrize

the network with a single high-order tensor, each dimen-

sion of which represents a different architectural design

parameter of the network. For the case of Fully Convo-

lutional Networks (FCNs) with an encoder-decoder struc-

ture considered herein (see also Fig. 1), each dimension

of the 8−dimensional tensor represents a different architec-

tural design parameter of the network such as the number of

(stacked) FCNs used, the depth of each network, the num-

ber of input and output features for each convolutional block

and the spatial dimensions of each of the convolutional ker-

nels. By modelling the whole FCN with a single tensor,

our approach allows for learning correlations between the
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different tensor dimensions and hence to fully capture the

structure of the network. Moreover, this parametrization

implicitly regularizes the whole network and drastically re-

duces the number of parameters by imposing a low-rank

structure on that tensor. Owing to these properties, our

framework is much more general and flexible compared to

prior work offering increased accuracy and high compres-

sion rates. In summary, the contributions of this work are:

• We propose using a single high-order tensor for whole

network tensorization and applying it for capturing

the rich structure of Fully Convolutional Networks.

Our end-to-end trainable approach allows for a wide

spectrum of network decompositions and compression

rates which can be chosen and optimized for a particu-

lar application.

• We show that for a large range of compression rates

(both high and low), our method preserves high ac-

curacy. Compared to prior work based on tensoriz-

ing individual convolutional layers, our method con-

sistently achieves higher accuracy, especially for the

case of high compression rates. In addition, we show

that, for lower compression rates, our method outper-

forms the original uncompressed network.

• We illustrate the favorable properties of our method

by performing a large number of experiments and ab-

lation studies for the challenging task of human pose

estimation. The experiments shed light on several in-

teresting aspects of our method including the effect of

varying the rank for each mode of the tensor, as well

as the decomposition method used. We further val-

idate our conclusions on a different dense prediction

task, namely semantic facial part segmentation.

2. Related Work

In this section, we review related work, both for tensor

methods and human pose estimation.

Tensor methods offer a natural extension of traditional

algebraic methods to higher orders. For instance, Tucker

decomposition can be seen as a generalization of PCA to

higher dimensions [18]. Tensor decompositions have wide-

reaching applications, including learning a wide range of

probabilistic latent-variable models [1]. Tensor methods

have been recently applied to deep learning, for instance,

to provide a theoretical analysis of deep neural nets [9].

New layers were also proposed, leveraging tensor methods.

[19] proposes tensor contraction layers to reduce the dimen-

sionality of activation tensors while preserving their multi-

linear structure. Tensor regression layers [20] express out-

puts through a low-rank multi-linear mapping from a high-

order activation tensor to an output tensor of arbitrary order.

A lot of existing work has been dedicated to leverag-

ing tensor decompositions in order to re-parametrizing ex-

isting layers, either to speed up computation or to reduce

the number of parameters. Separable convolutions, for in-

stance, can be obtained from existing ones by applying CP

decomposition to their kernel. The authors in [23] propose

such parametrization of individual convolutional layers us-

ing CP decomposition with the goal of speeding them up.

Specifically, each of the 4D tensors parametrizing the con-

volutional layers of a pre-trained network are decomposed

into a sum of rank–1 tensors using CP decomposition. The

resulting factors are used to replace each existing convolu-

tion with a series of 4 convolutional layers with smaller ker-

nels. The network is then fine-tuned to restore performance.

[17] proposes a similar approach but uses Tucker decompo-

sition instead of CP to decompose the convolutional layers

of a pre-trained network, before fine-tuning to restore the

performance. Specifically, Tucker decomposition is applied

to each convolutional kernel of a pre-trained network, on

two of the modes (input and output channel modes). The

resulting network is fine-tuned to compensate for the drop

in performance induced by the compression.

In [3], the layers of deep convolutional neural networks

are also re-parametrized using CP decomposition, opti-

mized using the tensor power method. The network is

then iteratively fine-tuned to restore performance. Simi-

larly, [36] proposes to use tensor decomposition to remove

redundancy in convolutional layers and express these as the

composition of two convolutional layers with less param-

eters. Each 2D filter is approximated by a sum of rank–1
matrices. Thanks to this restricted setting, a closed-form

solution can be readily obtained with SVD. This is done for

each convolutional layer with a kernel of size larger than 1.

While all these focus of convolutional layers, other types of

layers can also be parametrized. For instance, [27] uses the

Tensor-Train (TT) format [28] to impose a low-rank ten-

sor structure on the weights of the fully-connected layers.

Tensorization of generative adversarial networks [6] and se-

quence models [45] have been also proposed.

The work of [7] proposes a new residual block, the so-

called collective residual unit (CRU), which is obtained by

applying a generalized block term decomposition to the last

two modes of a 4th–order tensor obtained by stacking the

convolutional kernels of several residual units. Similarly

to existing works, each of the CRUs is parametrized indi-

vidually. [44] leverages tensor decomposition for multi-

task learning to allow for weight sharing between the fully-

connected and convolutional layers of two or more deep

neural networks.

Overall, to the best of our knowledge, our work is the

first to propose an end-to-end trainable architecture, fully

parametrized by a single high order low-rank tensor.
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Other methods for network decomposition. There are

also other methods, besides tensor-based ones, for reduc-

ing the redundancy and number of parameters in neural net-

works. A popular approach is quantization which is con-

cerned with quantizing the weights and/or the features of

a network [41, 43, 46, 37, 10, 31]. Quantization methods

should be considered orthogonal to tensor methods as one

could apply them to the output of tensor decompositions,

too. Similarly, complementary to our work should be con-

sidered methods for improving the efficiency of neural net-

works using weight pruning [24, 14].

More related to our work are hand-crafted decompo-

sition methods such as MobileNet [15] and Xception [8]

which decompose 3× 3 convolutions using efficient depth-

wise and point-wise convolutions. We compare our meth-

ods with MobileNet, the method of choice for improving

the efficiency of CNNs, and show that our approach outper-

forms it by large margin.

Human pose estimation. CNN–based methods have re-

cently produced results of remarkable accuracy for the task

of human pose estimation, outperforming traditional meth-

ods by large margin [40, 39, 30, 4, 26, 42]. Arguably, one

of the most widely used architectures for this task is the

stacked HourGlass (HG) network proposed by [26]. An

HG is an encoder-decoder network with skip connections

between the encoder and the decoder, suitable for making

predictions at a pixel level in a fully convolutional manner.

[26] uses a stack of 8 of these networks to achieve state-of-

the-art performance on the MPII dataset [2]. The architec-

ture is shown in Fig. 1. In this work, we choose tensoriz-

ing the HG network primarily because of its rich structure

which makes it suitable to model it with a high-order ten-

sor. We note that the aim of this work is not to produce

state-of-the-art results for the task of human pose estima-

tion but to show the benefits of modelling a state-of-the-art

architecture with a single high-order tensor.

3. Mathematical background

In this section we first introduce some mathematical

background regarding the notation and tensor methods used

in this paper.

Notation. We denote vectors (1st–order tensors) as v, ma-

trices (2nd–order tensors) as M, and tensors of order 3 or

greater as X . We denote element (i0, i1, · · · , iN ) of a ten-

sor as Xi0,i1,··· ,iN or X (i0, i1, · · · , iN ). A colon is used to

denote all elements of a mode, e.g. the mode–1 fibers of X
are denoted as X (:, i2, i3, · · · , iN ). Finally, for any i, j ∈
N, [i . . j] denotes the set of integers {i, i+1, · · · , j−1, j}.

Mode–n unfolding of a tensor X ∈ R
I0×I1×···×IN , is a

matrix X[n] ∈ R
In,IM , with M =

∏N
k=0,
k 6=n

Ik, defined by

the mapping from element (i0, i1, · · · , iN ) to (in, j), with

j =
∑N

k=0,
k 6=n

ik ×
∏N

m=k+1,
m 6=n

Im.

Mode-n product. For a tensor X ∈ R
I0×I1×···×IN and

a matrix M ∈ R
R×In , the n-mode product of a tensor is

a tensor of size (I0 × · · · × In−1 ×R× In+1 × · · · × IN )
and can be expressed using the unfolding of X and

the classical dot product as X ×n M = MX[n] ∈
R

I0×···×In−1×R×In+1×···×IN

Tensor diagrams. While 2nd–order tensors can easily be

depicted as rectangles and 3rd–order tensors as cubes, it is

impractical to represent high-order tensors in such way. We

instead use tensor diagrams, which are undirected graphs

where the vertices represent tensors. The degree of each

vertex (i.e. the number of edges originating from this cir-

cle) specifies the order of the corresponding tensor. Ten-

sor contraction over two modes is then represented by sim-

ply linking together the two edges corresponding to these

two modes. Fig. 2 depicts the Tucker decomposition (i.e.

contraction of a core tensor with factor matrices along each

mode) of an 8th–order tensor with tensor diagrams.

4. T-Net: Fully-tensorized FCN architecture

In this section, we introduce our fully-tensorized method

by first introducing the architecture before detailing the

structure of the parametrization weights.

4.1. FCN tensorization

In this section, we describe how to tensorize the stacked

HourGlass (HG) architecture of [26]. The HG has a num-

ber of design parameters namely the number of (stacked)

HGs, the depth of each HG, the three signal pathways of

each HG (skip, downsample and upsample), the number of

convolutional layers in each residual block (i.e. the depth

of each block), the number of input and output features of

each block and finally, the spatial dimensions of each of the

convolutional kernels.

To facilitate the tensorization of the whole network, we

used a modified HG architecture in which we replaced all

the residual modules with the basic block introduced by

[13], maintaining the same number of input and output

channels throughout the network. We made the encoder and

the decoder symmetric, with 4 residual modules each. Fig-

ure 1 illustrates the modified HG architecture. We note that

from an accuracy perspective, this modification performs

(almost) the same as the original HG proposed in [26].

From the network described above, we derive the high-

order tensor for the proposed Tensorized-Network (T-Net)

7824



Figure 1: Overall network architecture. Each block in the fully convolutional network is a basic-block module [13] (blue

insert), containing bdepth (by default 2) convolutional layers with 3 × 3 kernels followed by BatchNorm and ReLU. For

all experiments, unless explicitly stated otherwise, we used a stack of 4 sub-networks with 3 pathways each: downsam-

pling/encoder (red blocks), upsampling/decoder (dark blue) and skip connection (cyan). Yellow dots are element-wise sums.

Figure 2: Tensor diagram of the Tucker form of the weight

tensor W parametrizing our model.

as follows: all weights of the network are parametrized by

a single 8th–order tensor W ∈ R
I0×I1×···×I7 , the modes of

which correspond to the number of HGs (I0 = #hg), the

depth of each HG (I1 = hgdepth), the three signal pathways

(I2 = hgsubnet), the number of convolutional layers per block

(I3 = bdepth), the number of input features (I4 = fin), the

number of output features (I5 = fout), and finally the height

(I6 = h) and width (I7 = w) of each of the convolutional

kernels.

4.2. T­Net variants

Based on the previous parametrization of the network,

we can add various low-rank constraints on the weight ten-

sor, leading to variants of our method.

Tucker T-Net. The Tucker form of our model ex-

presses the constructed 8th–order tensor W as a rank–

(R0, · · · , R7) Tucker tensor, composed of a low rank

core G ∈ R
R0×R1×···×R7 along with projection factors

(
U

(0), · · · ,U(7)
)
, with U

(k) ∈ R
Rk,Ik , k ∈ [0 . . 7]. This

allows us to write the network’s weight tensor in a decom-

posed form as:

W = G ×0 U
(0) ×1 U

(2) × · · · ×7 U
(7) (1)

= JG; U(0), · · · ,U(7)K

See also Fig. 2 for a tensor diagram of the Tucker form of

the weight tensor. Note that the CP decomposition is the

special case of the Tucker decomposition, where the core is

super-diagonal.

MPS T-Net. The Matrix-Product-State (MPS) form (also

known as tensor-train [28]) of our model expresses the con-

structed 8th–order weight tensor W as a series of third-

order tensors (the cores) and allows for especially large

space-savings. In our case, given W ∈ R
I0×I1×···×I7 ,

we can decompose it into a rank (R0, R1, · · ·R8)–MPS

as a series of third-order cores G0 ∈ R
R0,I0,R1 ,G1 ∈

R
R1,I1,R2 , · · · ,G7 ∈ R

R7,I7,R8 . The boundary condi-

tions dictate R0 = R8 = 1. In terms of individual el-

ements, we can then write, for any i0 ∈ [0 . . I0], i1 ∈
[0 . . I1], · · · , i7 ∈ [0 . . I7]:

W(i0, i1, · · · , i7) = G0[i0]
︸ ︷︷ ︸

1×R1

× G1[i1]
︸ ︷︷ ︸

R1×R2

× · · · × G7[i7]
︸ ︷︷ ︸

R7×1

4.3. Parameter analysis

This section compares the number of parameters of our

model which parameterizes the whole weight tensor with
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Figure 3: Tensor diagram of the MPS/TTrain form of the

weight tensor W . Note the train–like shape from which the

method takes its name, as well as the boundary conditions

(R0 = R8 = 1).

a single high-order tensor with methods based on layer-

wise decomposition (e.g. [17, 23]). Considering a Tucker

rank–R0, R1, · · · , R7 of the weight tensor parametrizing

the whole network, the resulting number of parameters is:

NT−Net =
7∏

k=0

Rk +
7∑

k=0

Rk × Ik. (2)

Compressing each of the Nconv convolutional layer sep-

arately [17], with a rank R4 and R5 for the number of in-

put and output features, respectively, and writing Nconv =
∏4

k=0 Ik, we obtain the total number of parameters:

Nconv × (R4 ×R5 × I6 × I7 +R4 × I4 +R5I5) . (3)

In comparison, our model, with the same ranks R4

and R5 imposed on the number of features, would

only have Nconv × (R4 ×R5 × 3× 3) + R4 × I4 +
R5I5 parameters. In other words, our model has
(
∏4

k=0 Ik − 1
)

(R4 × I4 +R5I5) parameters less than a

corresponding layer-wise decomposition.

Speeding up the convolutions. When parametrized us-

ing a CP or Tucker decomposition, a convolutional layer

can be efficiently replaced by a series of convolutions with

smaller kernels [23, 17], thus allowing for large computa-

tional speedups. This efficient re-parametrization also ap-

plies to our model. To see this, given the weight tensor

W ∈ R
I0×I1×···×I7 of our Tucker T-Net, we have

W = G ×0 U
(0) ×1 U

(1) × · · · ×7 U
(7).

For any i0, i1, i2, i3 ∈ (I0, I1, I2, I3), let us denote

K̃ = W(i0, i1, i2, i3, : , : , : , : ), corresponding to one of

the convolutional kernels of the T-Net. By re-arranging the

terms, and considering the partially contracted core, we can

write:

K̃(s, t, j, k) =

R4∑

r4=0

R5∑

r5=0

C(r4, r5, j, k)U
(4)(s, r4)U

(5)(t, r5)

with C = Ci0,i1,i2,i3, : , : , : , : ∈ R
(I4,I5,I6,I7) and

C =
(

G ×0 U
(0) × · · · ×3 U

(3) ×6 U
(6) ×7 U

(7)
)

.

Baseline Tucker 1.37× Tucker 2.77× Tucker 4.17×
3.79 ms. 4.36 ms. 2.72 ms. 2.45 ms.

Table 1: Timing of baseline conv. vs. naive Tucker.

Speed-up for a 3 × 3 convolution preserving the number

of channels and input tensor of size (128× 64× 64), with a

batch-size 64 . We vary the Tucker-rank and report times.

This gives us an effective way of approximating each convo-

lution by three smaller convolutions [17]. While getting the

full speedup would require the writing of specialized CUDA

kernels, some timings results with a naive implementation

using PyTorch are shown in Table 1, for a single convolu-

tional layer with a kernel tensor of size 128 × 128 × 3 × 3
compressed using Tucker decomposition.

5. Experimental Setup

The bulk of our experiments were conducted for the task

of human pose estimation. We also validated some of our

conclusions by conducting experiments for a different dense

prediction task, namely facial part segmentation.

Human pose estimation. Following [39], we conducted

experiments using the standard train and validation splits of

one of the most challenging single pose human pose estima-

tion datasets, namely MPII [2]. The dataset contains 22,000

images for training and another 3,000 for validation.

Semantic facial part segmentation. We constructed the

facial part segmentation dataset as in [5]: for training, we

used the 300W training dataset (more than 3,000 images)

and for testing the whole 300W competition test set (600

images) [33].

Implementation details We used a stacked HG architec-

ture with the following architectural parameters: #hg = 4,

hgdepth = 4, hgsubnet=3, bdepth = 2, fin=128, fout=128, and

h = w = 3. This resulted in a 8th–order tensor of size

4× 4× 3× 2× 128× 128× 3× 3.

For the uncompressed baseline network, we reduced the

number of its parameters by simply decreasing the number

of channels in each residual block, varying it from 128 to

64. By doing so, (as opposed to reducing the number of

stacks), we maintain all the architectural advantages offered

by the stacked HG architecture and ensure a fair comparison

with the proposed tensorized network.

Training. All models were trained for 110 epochs using

RMSprop [38]. The learning rate was varied from 2.5e− 4
to 1e − 6 using a Multi-Step fixed scheduler. During train-

ing, we randomly augmented the data using: rotation (−25◦
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Tucker-rank Accuracy Compression

#hg hgdepth hgsubnet bdepth fin fout h w (PCKh) ratio

Original 86.99% 1.0x

3 4 3 2 128 128 3 3 87.42% 1.28x

2 4 3 2 128 128 3 3 86.95% 1.82x

1 4 3 2 128 128 3 3 86.05% 3.03x

4 3 3 2 128 128 3 3 87.71% 1.28x

4 2 3 2 128 128 3 3 87.59% 1.82x

4 1 3 2 128 128 3 3 86.89% 3.03x

4 4 2 2 128 128 3 3 87.53% 1.43x

4 4 1 2 128 128 3 3 86.19% 2.50x

4 4 3 1 128 128 3 3 82.59% 1.82x

4 4 3 2 96 96 3 3 87.43% 1.64x

4 4 3 2 64 64 3 3 86.13% 3.03x

4 4 3 2 32 32 3 3 83.10% 6.25x

4 4 3 2 128 128 2 2 87.30% 1.98x

Table 2: Human pose estimation task. Study of the redundancy of each of the modes of the 8th–order weight tensor. We

compress one dimension at a time by reducing its corresponding rank in the Tucker tensor. Reported accuracy is in terms of

PCKh.

Figure 4: Qualitative results produced by our method on MPII.

to 25◦ for human pose and −40◦ to 40◦ for face part seg-

mentation), scale distortion (0.75 to 1.25), horizontal flip-

ping and color jittering.

All experiments were run on a single NVIDIA TITAN V

GPU. All networks were implemented using PyTorch [29].

TensorLy [21] was used for all tensor operations.

Performance measures. For the human pose estimation

experiments, we report accuracy in terms of PCKh [2].

For facial part segmentation, we report segmentation ac-

curacy using the mean accuracy and mIOU metrics [25].

Finally, we measure the parameter savings using the

compression ratio = uncompressed

compressed
, defined as the total num-

ber of parameters of the uncompressed network divided by

the number of parameters of the compressed network.

6. Results

This section offers an in-depth analysis of the perfor-

mance and accuracy of the proposed T-Net. Our main re-

sults are that the proposed approach: i) outperforms the
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Method Parameters Compression ratio Accuracy

Uncompressed Baseline full, fin=fout=128 1x 87%

Trimmed Baseline fin=fout=112 1.3x 86.9%

Trimmed Baseline fin=fout=92 2x 85.9%

Trimmed Baseline fin=fout=64 4x 84.5%

Trimmed Baseline hg depth=3 1.3x 86.79%

Trimmed Baseline hg depth=2 1.8x 86.82%

Trimmed Baseline hg depth=1 3.0x 85.30%

MobileNet-[16] fin=fout=194 3.6x 84.3%

MobileNet-[16] fin=fout=160 5.4x 82.7%

[17] rank–(128, 128, 2, 2) 1.4x 84.9%

[17] rank–(96, 96, 3, 3) 1.3x 86.8%

[17] rank–(64, 64, 3, 3) 2.3x 86.4%

[17] rank–(32, 32, 3, 3) 4.7x 85.3%

[17] rank–(16, 16, 3, 3) 6.9x 83.7%

Tucker T-Net [Ours] rank–(4, 3, 3, 2, 110, 110, 3, 3) 1.7x 87.5%

Tucker T-Net [Ours] rank–(4, 4, 2, 2, 110, 110, 3, 3) 1.8x 87.4%

Tucker T-Net [Ours] rank–(3, 3, 3, 2, 110, 110, 2, 2) 3.7x 87.1%

Tucker T-Net [Ours] rank–(3, 2, 3, 2, 96, 96, 3, 3) 3.4x 86.7%

Tucker T-Net [Ours] rank–(3, 3, 2, 2, 80, 80, 3, 3) 4.2x 86.3%

Tucker T-Net [Ours] rank–(2, 2, 2, 2, 96, 96, 3, 3) 5.2x 86.0%

MPS T-Net [Ours] rank–(1, 4, 4, 12, 24, 110, 9, 3, 1) 7.4x 85.5%

Table 3: Human pose estimation task. Comparison between T-Net and various baselines and state-of-the-art methods.

Accuracy is reported in terms of PCKh. For the tensor decomposition-based methods, we report the rank, and for the others,

the number of channels in the convolutional layers.

layer-wise decomposition of [17] and [23], which are the

most closely related works to our method; ii) outperforms

the uncompressed, original network for low compression

rates; iii) achieves consistent compression ratios across ar-

bitrary dimensions and iv) outperforms MobileNet [16] by

large margin. Finally, we further validate some of these re-

sults for the task of semantic facial part segmentation.

All results reported were obtained by fine-tuning our net-

works in an end-to-end manner from a pre-trained uncom-

pressed original network. We were able to reach the same

level of accuracy when training from scratch, though this

required training for more iterations. In contrast, we found

that when trained from scratch, the layer-wise method of

[17] reaches sub-par performance, as also reported in their

paper.

6.1. Redundancy of the weight tensor

In order to better understand the compressibility of each

mode of the weight tensor, we first investigate the redun-

dancy of each of the modes of the tensor by compressing

only one of the modes at a time. Table 2 shows the accu-

racy (PCKh) as well as the compression ratio obtained by

compressing one of the modes, corresponding respectively

to the number of HGs (#hg), the depth of each HG (hgdepth),

the three pathways of each HG (hgsubnet), the number of con-

volutional layers per blocks (bdepth) and, finally, the number

of input features (fin), output features (fout), height (h) and

the width (w) of each of the convolutional kernels. The re-

sults are shown along with the performance of the origi-

nal uncompressed network. We observe that by taking ad-

vantage of the redundancy at network-level (as opposed to

[23, 17] which compress individual layers), the proposed

approach is able to effectively compress across arbitrary di-

mensions for large compression ratios while maintaining

similar, or even in some cases higher, accuracy than that

of the original uncompressed network.

6.2. Performance of the T­Net

Based on the insights gained from the previous ex-

periment, we selected promising configurations and com-

pressed over multiple dimensions simultaneously. We then

compared these configurations with baseline and state-of-

the-art methods. The results can be seen in Table 3.

Compression vs. trimming. The obvious comparison
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Method Parameters Compression ratio mIOU mAcc

Uncompressed baseline full, fin=fout=128 1x 76.02% 97.31%

T-Net [Ours] Tucker–(3, 2, 3, 2, 96, 96, 3, 3) 3.38x 76.01% 97.29%

T-Net [Ours] Tucker–(2, 2, 2, 2, 64, 64, 3, 3) 6.94x 75.57% 97.01%

Table 4: Facial part segmentation task. Comparison between T-Net and a network with the same architecture and number

of features as the compressed one. Our approach is able to retain a high accuracy even at high compression rates (up to 7x).

Figure 5: Qualitative results produced by our method on the facial part segmentation task.

is between T-Net and the original baseline network, “com-

pressed” by trimming it, reducing the number of parameters

to match the compression ratio achieved by T-Net.

Comparison with efficient architectures. A natural

question is whether T-Net performs favourably when com-

pared to architectures designed for efficiency. To answer

this, we performed a comparison with MobileNet [16], for

which we adjusted the number of channels of the convolu-

tional layers in order to vary the number of parameters and

obtain comparable compression ratios.

Comparison with the state-of-the-art. We also com-

pared with the layer-wise decomposition method of [17].

We firstly observe that by just reducing the number of

channels in the original network, a significant drop in per-

formance can be noticed. Secondly, our method consis-

tently outperforms [17] across the whole spectrum of com-

pression ratios. This can be seen by comparing the accu-

racy provided for any compression ratio for [17] with the

accuracy of the closest but higher compression ratio for our

method (for example, compare 2.33x for [17] with 3.67x for

our method). Our method always achieves higher accuracy

even though the compression ratio is also higher. In addi-

tion, unlike to [17] which does not seem to work well when

the size of the convolutional kernel is compressed from 3×3
to 2× 2, our method is able to compress that dimension too

while maintaining similar level of accuracy. Finally, our

method outperforms MobileNet [16] by a large margin.

In the same table, we also report the performance of a

variant of our method, using an MPS decomposition on the

weights rather than a Tucker one. This result shows that our

method works effectively with other decomposition meth-

ods as well. Nevertheless, we focused mainly on Tucker as

it is the most flexible compression method, allowing us to

control the rank of each mode of the weight tensor.

Results on face segmentation. Finally, we selected two

of our best performing models and retrained them for the

task of semantic facial part segmentation. Our method of-

fers significant compression ratios (up to 7x) with virtually

no loss in accuracy (see Table 4). These results further con-

firm that our method is task-independent.

7. Conclusions

We proposed an end-to-end trainable method to jointly

capture the full structure of a fully-convolutional neural net-

work, by parametrizing it with a single, high-order low-rank

tensor. The modes of this tensor represent each of the archi-

tectural design parameters of the network (e.g. number of

convolutional blocks, depth, number of stacks, input fea-

tures, etc). This parametrization allows for a joint regular-

ization of the whole network. The number of parameters

can be drastically reduced by imposing a low-rank structure

on the parameter tensor. We show that our approach can

achieve superior performance with low compression rates,

and attain high compression rates with negligible drop in

accuracy, on both the challenging task of human pose esti-

mation and semantic face segmentation.
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