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Abstract

Tensor methods are gaining increasing traction in machine learning. However, there
are scant to no resources available to perform tensor learning and decomposition in
Python. To answer this need we developed TensorLy.

TensorLy is a state of the art general purpose library for tensor learning. Written in
Python, it aims at following the same standard adopted by the main projects of the
Python scientific community and fully integrating with these. It allows for fast and
straightforward tensor decomposition and learning and comes with exhaustive tests,
thorough documentation and minimal dependencies. It can be easily extended and
its BSD licence makes it suitable for both academic and commercial applications.
TensorLy is available at https://github.com/tensorly/tensorly.

1 Introduction

Tensors, or multi-way arrays, of order higher than two, are multi-dimensional arrays indexed by
three or more indices, generalizing the notion of matrix (second order tensor). Tensors and tensor
decompositions or factorizations have a rich history, stretching almost a century, but only recently
i.e., roughly a decade ago, have become ubiquitous in signal processing, statistics, data analytics, and
machine learning.

Indeed, psychometrics and chemometrics have historically been the application areas driving theo-
retical and algorithmic developments in the field. However, tensors and their decompositions were
popularized by the (statisitical) signal processing and machine learning communities when they real-
ized the power of tensor decompositions in practice. Examples of such applications include, speech,
music, image, communications, biomedical, and social network signal processing and analysis, as
well as clustering, dimensionality reduction, subspace, dictionary and features learning e.g., [23, 24,
30, 22, 20, 25, 14, 2].

More recently, there has been a considerable amount of research in establishing connections between
tensor decompositions, the method of (high-order) moments, and compositional function spaces in
order to learn latent variable models (e.g., mulitiview mixture model, Gaussian mixtures, Independent
Component Analysis) [3], train deep neural networks with theoretical guarantees [13], and also
theoretically analyze their impressive empirical performance [8].

The interested reader is referred to several surveys in the topic, which focus range from basics of
multilinear (tensor) algebra and overview of different established tensor decompositions [17, 29], to
algorithmic advances [7, 19, 10, 6, 26] and applications [1].

Based on the above discussion, tensors and their decompositions have profound impact in signal

(data) analytics and machine learning with clear theoretical, algorithmic, and practical advantages
over their matrix counterparts. However, as opposed to matrix factorizations and matrix-based
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Tensor unfolding (X)), folding and vectorisation (vec(X')) )

Tensor multiplication (n-mode matrix product, ) = X x,, U and n-mode vector product X x,, U)
Matrix Kronecker (®) and Khatri-Rao () products

Hadamard product (x) is inherited from the standard numpy structure

Kruskal (UM .. UM]) and Tucker operators ([G; UM, ... UM

Computation of Higher-Order moments (E[x ® x ® x])

Proximal operators for the /1 norm and the nuclear norm

Table 1: Operations implemented

machine learning methods, tensor decompositions have not been widely adopted by data scientists
and practitioners, yet. This can be mainly attributed to the fact that there is a lack in available
libraries for tensor operations and decompositions, accessible from programming languages (e.g.,
Python, Java, Scala, etc) that data scientists and practitioners are familiar with. Even though some
libraries exist for handling tensors, these are implemented in non-free platforms (e.g. MATLAB’s
TensorToobox [5] and TensorLab [21]) or in low-level languages like C++ (e.g. TH++) and the deep
learning libraries e.g., Tensorflow and Torch can only suboptimally handle tensors.

Python is emerging as a language of choice for machine learning, as witnessed with the success of
scikit-learn [27], and is increasingly used in both academic and industrial research projects. However,
there is to date no Python library implementing tensor decomposition and learning. The exisiting ones
(e.g., scikit-tensor) offer only limited algorithms (e.g., decomposition only) and/or have restrictive
licenses. For applications to data analytics and machine learning, open source, well-developed and
-documented libraries that include methods for tensor decompositions are urgently needed.

TensorLy' introduces several contributions over the existing libraries: a) it provides state of the art
tensor learning including core tensor operations, tensor decomposition and tensor regression methods.
b) it is open source and BSD licensed. c) it comes with extensive tests and documentation; and d) it
depends exclusively on numpy and scipy.

2 TensorLy functionality and implementation

TensorLy has been developed with the goal to make tensor learning more accessible and to allow
for seemless integration with the python scientific environment. It builds on top of two core Python
libraries, Numpy [31] and Scipy [15] while having a soft-dependency on Matplotlib [12] for plotting:

Numpy The standard library for numerical computation in Python. It offers high performance
structures for manipulating multi-dimensional arrays. In particular, in 7ensorLy, we leverage
this convenient structure for efficient tensor operations.

Scipy Provides high performance mathematical functions, advantageously using numpy’s ndarray
structure.

Matplotlib Cross-compatible 2D graphics package offering high quality image and graphics genera-
tion.

The Application Programming Interface (API) aims at compatibility with scikit-learn [27], which is
the de-facto standard library for performing classical Machine Learning, preprocessing and cross-
validation. While scikit-learn is built to work with observations (samples) represented as vectors, this
library focuses on higher order arrays.

TensorLy’s current functionalities in term of tensor operations are summarised in Table. 2, where
inside the parenthesis the mathematical notation of Kolda and Bader [17] is adopted. Furthermore,
we have implemented core tensor decomposition and tensor regression methods listed in Table. 2.

TensorLy has been tailored for the Python ecosystem and the operations are optimised for speed:
tensor operations have been redefined when possible to allow for better performance. In particular, we
propose an efficient unfolding of tensors which differs from the traditional one [17] by the ordering
of the columns.
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CANDECOMP-PARAFAC (CP) decomposition e.g. [17])

Non-Negative CP decomposition [28])

Tucker decomposition (Higher-Order SVD) (e.g. [17])

Non-Negative Tucker decomposition [16])

Tensor Ridge regression (Tucker and Kruskal) [11, 32, 18]
Table 2: Algorithms implemented

Given a tensor, X € RI1*I2XXIN the mode-n unfolding of X is a matrix Xy € Rindn,
with M = H;]cvzl, Ij; and is defined by the mapping from element (i1, 42, - ,in) to (iy,j), with
k#n
. N . N
J=2k=1, 1k X [L1npi1 Im-
k#n

Not only does this formulation achieve better performance when using C-ordering of the elements (as
numpy does by default), it also translates into more natural properties. For instance, given a tensor
X € RIvxIxxIN apd jts Tucker decomposition [[C;, U, ... UM, we can express the mode-n
unfolding of X as:

T
X, = UGy, <U<1> - UMD Ut g...g U(N))

Finally, we emphasize code quality and ease of utilisation for the end user. To that extent, both testing
and documentation are an essential part of the package. Each function comes with its documentation
and unit-tests (at the time of writing, the coverage is of 99 %).

3 Experiments

In TensorLy, tensors are simply numpy mutli-dimensional arrays which are passed directly to the
various methods, decomposition or regression. This allows for competitive performance even though
the library is implemented in a high-level, interactive language.

3.1 Tensor regression

TensorLy offers a simple interface for tensor regression with the same API as Scikit-Learn. The
regressors are object that expose a fir method that takes as parameters the data tensor X and the
corresponding array of labels y. Given new data X'r, the predict method returns the regressed labels
yr-

To illustrate the effectiveness of tensor regression, we
fixed the regression weights V to be a second order tensor Original Kruskal Tucker Ridge

(a cross or a yin-yang image) of size (50 x 50). We then gen- velghts - regression  regression _regression,
erated a random tensor X of size (1500 x 50 x 50) of which + + + :-'."-

each element was sampled from a normal distribution. Fi- s
nally, we constructed the corresponding response array y .
of size 1500 as: Vi € {1,--- ,1500}, y; = (X;, W). ; -

We use this data to train a rank-10 Kruskal Tucker Re-
gression and a rank (10, 10, 10) Tucker Ridge Regression.
We also train a classical Ridge Regression model on the
vectorised training samples (we use the scikit-learn imple-

mentation). Figure 1: Example of Tensor Ridge re-
gression compared to classical Ridge
In Fig. 3.1, we present in the first column the original ~T¢&ression.

weight. The second and third column present the weight

learnt from our Tucker and Kruskal regression models while the last column presents the weights
learned by a classical Ridge Regression. As can be observed, tensor regression gives more in-
terpretable result due to its ability to take into account the structure in the data that is lost when
vectorising it, and thanks to its low rank weight coefficient.



3.2 Tensor decomposition

We generated third order random tensors of size (K x K x K) for K varying from 10 to 400 with
a step of 10, for a total of elements varying from 1,000 to 64,000,000. We then compared runtime
and performance with scikit-tensor (sktensor) and the Matlab Tensor Toolbox (tensor toolbox) for
CANDECOMP-PARAFAC and Tucker decomposition of these tensors.
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Figure 2: CANDECOMP-PARAFAC decompostion of a tensor of varying size.

We first apply a rank 10 CANDECOMP-PARAFAC decomposition via Alternating Least Squares
(ALS). In Fig. 2 we show the evolution of the performance and runtime as a function of the number
of elements in each mode of the tensor. Each method was run for exactly 100 iterations with an SVD

based initialisation.

04

Reconstruction performance

0.0

— tensorly
—  sktensor

—— tensor toolbox

s)

Time for 200 iterations (:

— tensorly
— sktensor
— tensor toolbox

50

100

150 200 250
Dimension of each mode

300 350

0

100

5 100 150 200

20 300 350 400
Dimension of each mode

Figure 3: TUCKER decompostion of a tensor of varying size.

Similarly, in Fig. 3, we show the evolution of the performance and the execution time for a rank
(10,10, 10) Tucker decomposition via Higher Order Orthogonal Iteration (HOI), when running each
method for exactly 100 iterations with an SVD based initialisation.

As can be observed, all methods yield similar performance, whilst our library offers competitive
speed.

4 Conclusion and future work

TensorLy makes tensor learning accessible and easy by offering state-of-the-art tensor methods and
operations through simple consistent interfaces under a permissive license. Interestingly, experimental
evaluation indicates that tensor decomposition implemented in TensorLy are executed faster than their
corresponding Matlab implementation. Thus, the library allows for efficient comparison of existing
methods and can be easily extended to new ones, with systematic unit-tests and documentation.

Going forward we will further extend the available decompositions with other state-of-the-art
methods such as PARAFAC2, DEDICOM, etc and also include robust tensor decomposition [4, 9]. It
is worth noting that proximal operators for the /; norm and nuclear norm are already available in
TensorLy.
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