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Abstract—Natural human-computer interaction and audio-visual human behaviour sensing systems, which would achieve robust
performance in-the-wild are more needed than ever as digital devices are becoming indispensable part of our life more and more.
Accurately annotated real-world data are the crux in devising such systems. However, existing databases usually consider controlled
settings, low demographic variability, and a single task. In this paper, we introduce the SEWA database of more than 2000 minutes of
audio-visual data of 398 people coming from six cultures, 50% female, and uniformly spanning the age range of 18 to 65 years old.
Subjects were recorded in two different contexts: while watching adverts and while discussing adverts in a video chat. The database
includes rich annotations of the recordings in terms of facial landmarks, facial action units (FAU), various vocalisations, mirroring, and
continuously valued valence, arousal, liking, agreement, and prototypic examples of (dis)liking. This database aims to be an extremely
valuable resource for researchers in affective computing and automatic human sensing and is expected to push forward the research in
human behaviour analysis, including cultural studies. Along with the database, we provide extensive baseline experiments for
automatic FAU detection and automatic valence, arousal and (dis)liking intensity estimation.

Index Terms—SEWA, Affect Analysis In-the-wild, emotion recognition, regression.
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1 INTRODUCTION

A RTIFICIAL Intelligence (AI) technologies are enabling
the development of intelligent systems that are

human-affect-aware and trustworthy, meaning that they can
automatically detect and intelligently respond to users affec-
tive states [1]. Affecting computing requires methods that
can robustly and accurately analyse human facial, vocal as
well as verbal behaviour and interactions in-the-wild, that
is, from data captured by omnipresent audio-visual sensors
in digital devices in almost arbitrary recording conditions
including semi-dark, dark and noisy rooms.

Albeit notable progress has been made so far in machine
analysis of human emotion and sentiment, there are still
important challenges that need to be addressed in order
to deploy and integrate affect-aware systems into everyday
interfaces and real-world contexts. Concretely [2], [3]:

• The vast majority of available datasets suitable for
audio-visual emotion and sentiment research (cf. Sec-
tion 2.4 for a brief overview) have been collected in
laboratory or controlled conditions, with controlled
noise level and reverberation, often limited verbal
content, illumination and calibrated cameras. Clearly,
such conditions are not present in real-world appli-
cations and tools trained on such data usually do not
generalise well to behavioural recordings made in-
the-wild.

• Many of the available datasets contain examples of
induced behaviour as opposed to spontaneous be-
haviour (occurring in real-life settings of users nat-
ural environment like their home). As explained in
various studies e.g., [4], [5], spontaneous facial move-
ments are smooth and ballistic, and are more typical
of the subcortical system (not associated with cortex
and displayed unconsciously). On the other hand,

induced facial expressions may be planned and so-
cially modified to a certain extent (i.e., associated
with cortex and produced consciously), with entirely
different dynamical characteristics than fully sponta-
neous facial expressions. Consequently, the dynamics
of the behaviour (timing, velocity, frequency, tem-
poral inter-dependencies between gestures) crucially
affect facial and vocal behaviour interpretation, and
currently they are not taken into account.

• Observed behaviours may be influenced by those
of an interlocutor and thus require analysis of both
interactants, especially to measure such critically
important patterns as mimicry, rapport or senti-
ment. However, existing approaches typically per-
form analysis of a single individual, and webcam-
mediated face-to-face human computer interaction
(FF-HCI) is not addressed as a problem of simulta-
neous analysis of both interacting parties.

• Available audio-visual databases are typically cul-
ture specific, e.g., the VAM faces database [6] consists
of 20 German speakers, the SEMAINE database con-
sist of UK subjects [7], the RECOLA database con-
sists of French speaking participants, the CONFER
dataset contains only Greeks [8]. Hence, there is no
database that would enable a large scale study on
the effect of culture on expression recognition and
communication of emotions and sentiment.

• Most of the existing databases are only annotated in
terms of certain behaviour and affect dimensions, for
instance, the SEMAINE database contains continu-
ous annotations of valence and arousal, the CONFER
dataset is annotated only in terms of conflict intensity
etc. Moreover, is no database annotated in terms of
multiple behavioural cues: facial action units (FAUs),
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affect dimensions and social signals.

In this paper, we aim to address the above mentioned
challenges and limitations of existing datasets by introduc-
ing the SEWA database (SEWA DB), in Section 3, which
is an audio-visual, multilingual dataset of richly annotated
facial, vocal, and verbal behaviour recordings made in-the-
wild. The SEWA DB extends and contrasts considerably
the available audio-visual datasets for affect research by
providing the following key features:

• The SEWA DB consists of audio-visual recordings
of spontaneous behaviour of volunteers, captured in
completely unconstrained, real-world, environments
using standard web-cameras and microphones.

• It contains episodes of unconstrained interactions
of subjects of different age, gender, and cultural
backgrounds. In particular, 6 groups of volunteers
with around 66 subjects per group (50% females,
uniformly divided over 5 age groups, 20+, 30+, 40+,
50+, 60+) from six different cultural backgrounds,
namely British, German, Hungarian, Greek, Serbian,
and Chinese were recoded. This makes the SEWA
DB the first publicly available benchmark dataset for
affect analysis in the wild across age and cultures.

• Audio-visual recordings in the SEWA DB are richly
annotated in terms of FAUs, facial landmarks, vocal
and verbal cues as well as continuously valued emo-
tion dimensions such as valence, arousal, liking and
social signals including agreement and mimicry. This
unique feature will allow for the first time to study
different aspects of human affect simultaneously, in-
vestigate how observed behaviours are influenced in
dyadic interactions, and exploit behaviour dynam-
ics in affect modelling and analysis. Furthermore,
the breadth of the annotations will allow to exploit
interdependencies between age, gender, word and
language usage, affect and behaviour, hence enabling
robust and context-sensitive interpretation of speech
and non-verbal behaviour.

For benchmarking and comparison purposes, we pro-
vide exhaustive baseline experimental results FAUs detec-
tion and valence, arousal and liking/disliking estimation are
provided in Section 4.

The SEWA database is available online at http://db.
sewaproject.eu/ and will not only be an extremely valuable
resource for researchers in affective computing and auto-
matic human sensing but it may also push forward the
endeavour in human behaviour analysis, especially when
it comes to cross-cultural studies.

2 STATE-OF-THE-ART IN AUDIO-VISUAL EMOTION
DATABASES

The standard approach in automatic emotion recognition
relies on machine learning models trained on a collection
of recordings, annotated in terms of different categories or
dimensions of affect. As a consequence, the quality of the
trained models, and especially their generalisation ability on
new data acquired in different conditions, strongly depends
on a myriad of factors that shape the construction of the

emotional dataset itself. In this section, we discuss three of
those main factors, namely elicitation methods, models of
emotion representation, and data annotation techniques. In
section 2.4, we provide an overview of existing corpora.

2.1 Elicitation methods

One of the factors that has a significant impact on the
models of emotion is the type of elicitation methods used
to collect affective data. In order to record expressions of
affect, one needs to consider a suitable context in which
those expressions will be observed. Three main types of
context have been used so far to collect such data: (i) posed
behaviour – emotion is portrayed by a person upon request,
e. g., [9], [10], (ii) induced behaviour – a controlled setting is
designed to elicit a reaction to a given affective stimulus,
e. g., watching audio-visual clips or interacting with a ma-
nipulated system [11], [12], and (iii) spontaneous behaviour
– natural interactions between individuals, or between a
human and a machine, are collected in a given context, e. g.,
chatting with a sensitive artificial listener [7], or resolving a
task in collaboration [13].

2.1.1 Posed behaviour

Interaction scenarios based on a posed behaviour present
the advantage to know in advance the expressed emotion,
since the portrayals are acted. Targeted emotions usually
include the six ”basic emotions“ [14], and for which evi-
dence for some universality over various cultures has been
shown [15]. Acted scenarios further provide a fine-grained
control of the material used to collect data, e. g., phonetic
complexity of the spoken utterances can be balanced for
vocal analysis [10], as well as illumination or pose variations
for facial analysis [16]. In order to facilitate the portrayal of
emotion, scripted scenarios can be exploited, with eventu-
ally the help of a professional director, who can interact with
the actor, thus providing a more natural context [10], [17].

The automatic analysis of acted expressions of six basic
emotions is now considered a solved problem with high ac-
curacy performance reported in the literature [18], [19], [20].
Acted data can be of great interest when one wants to focus
on specific details of emotional expressions. For instance,
this can be very helpful for building rule-based prediction
systems [21], [22], or when the targeted population presents
major difficulties in handling complex display of emotion,
such as in the autism spectrum conditions [23], [24]. On the
other hand, acted data cannot be used for training when one
wants to predict natural display of emotion. Spontaneous
expressions are much more subtle in comparison with acted
portrayals. As a consequence, they are also much more
challenging to recognise [25].

2.1.2 Induced behaviour

In order to collect naturalistic expressions of emotion, one
can induce affect by using either passive or active methods.
Passive methods consist in (dis)playing a set of standardised
stimuli to subjects whose reactions (vocal, facial, and phys-
iological) are recorded. Stimuli can be either static, e. g., the
International Affective Picture Systems (IAPS) [26], or dy-
namic, e. g., audio clips [27], video clips [28] or excerpts from

http://db.sewaproject.eu/
http://db.sewaproject.eu/
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movies [29]. They can also be incorporated into a human-
computer interaction system, in order to provoke affective
reaction from the user. For instance, system malfunctions
or unexpected events can be generated automatically, or
by a Wizard-of-Oz, in order to induce emotion [30]. In-
duced behaviours are also of interest for emotionally driven
marketing research, e.g., the efficiency of an audiovisual
advertisement can be measured automatically through the
affective reactions of the audience, instead of self-reported
questionnaires.

2.1.3 Spontaneous behaviour
The most appealing approach for capturing a wide range of
fully naturalistic displays of emotions consists in recording
spontaneous human interactions. Ecologically valid situa-
tions, i. e., observing humans in their natural environments,
would be ideal as it ensures unobtrusiveness and thus
guarantees the observation of fully natural behaviours. This
step out of the laboratory has not been accomplished until
now for the collection of affective data produced during
human interactions. The SEWA database presented in this
paper is the very first such collection of interactive hu-
man behaviour, annotated in terms of displayed affective
dimensions, recorded in-the-wild. Until now, various char-
acters presenting different personality traits (e. g., joyful, de-
pressed, introvert, etc), and simulating an artificial sensitive
listener, have served as human interlocutors [7].

2.2 Representation of emotion
Emotion is a subjective feeling, and a complex internal
phenomenon. Hence, using a simplistic classification-based
model relying on few emotion categories provides only a
very limited description of the phenomenon. Additionally,
whether or not a certain expression stems from one emotion
or the other (e. g., sadness versus boredom) could be matter
of subjective interpretation.

In the pursuit of a finer model, several continuous-
valued, multidimensional models have been proposed for
more precise emotion description. Arguably, the most pop-
ular model employed by the affective computing research
community is the two dimensional model describing the
degree of activation (arousal) and pleasantness (valence)
of displayed affect expressions as a point in the Cartesian
plane. A well known problem with this approach is the
dynamically varying time-delay between an expression and
the annotation due to reaction lag of the annotators, which
also varies among different annotators, over the sessions,
and even during every session [31]. Yet methods have been
proposed for spatio-temporal alignment of annotations [31],
[32] to remedy this problem and come up with reliable
ground truth to be used for training dimensional affect
regressors.

2.3 Data Annotation and generation of the Gold Stan-
dard
Depending on the choice of the model for emotion represen-
tation, several research groups have developed their own
annotation tools. Some of these tools have been now made
available to researchers across the world, some even with
open source licenses. Popular annotation tools in use today

are ANVIL [33], ATLAS [34], Ikannotate [35], EmoWheel
(Geneva emotion wheel) [36], FEELtrace [37], Gtrace 1,
ANNEMO [38], and the frame by frame Valence/Arousal
Online Annotation Tool [39].

Several methods exist for creating a unified view of
the perceived emotion from a set of annotations, gener-
ally referred as the ‘Gold Standard’ to differentiate with
‘ground-truth’, which is avoided for affective computing as
there does not exist a truth on a subjective feeling such as
emotion. The basic principle is to use consensus among the
evaluators to come up with a common, best representative
annotation by using different metrics such as the correlation
coefficients, dynamical time warping (DTW) distance [32],
[40], average of the data post standardization or normal-
ization, or assigning individual annotations certain weight
percentages (e. g., evaluator weighted estimator (EWE)).

2.4 The Existing Corpora
Here, we focus here on databases containing dyadic inter-
action recordings annotated in terms of displayed affective
reactions. For an overview of databases containing record-
ings of non-interactive subjects, the reader is referred to
recent survey papers (e.g. [19], [41]) and recent database
papers (e.g. [39]). Most of the databases of dyadic interac-
tion recordings annotated in terms of displayed affective
reactions contain recordings made in controlled settings,
concern a constrained dyadic task, have low demographic
variability, and are made in primarily one language –that
has mostly been English so far. Predominance of one lan-
guage in the corpora limits usability of the database for
cross-lingual, cross-cultural study of emotion recognition.
Table 1 presents a summarized overview of the surveyed
databases containing dyadic interactions.

2.4.1 Elicitation using Conversational Context
The Geneva Airport Lost Luggage Study database [42] is
amongst the very few databases featuring cultural diversity
in terms of its subjects. 112 passengers –that were required
to claim their lost baggage at the airline’s baggage retrieval
office, were recorded surreptitiously during their interaction
with the airline agents processing their claims. Because of
this unobtrusive recording paradigm, the dataset features
truly natural emotional responses, and can be claimed to
be free from Labov’s paradox [49]. The gender split of the
data is adequately balanced with 59.8 % male, and 40.2 % fe-
male subjects. The linguistic/cultural distribution however
is quite unbalanced. In addition, individual languages of
the participants is not reported, only ’language groups’ are
given [42]. No continuous annotations are available, only
subjects overall feeling for the whole episode are provided.
Specifically, the subjects self-reported their emotional states
before and after the interaction in a 7-point scale for 5 emo-
tion categories; namely ‘angry/irritated’, ‘resigned/sad’,
‘indifferent’, ‘worried/stressed’, and ‘in good humour’.

The Cardiff Conversation Database (CCDb) [46] and 4D
Cardiff Conversation Database (4D CCDb) [48] databases fol-
low another interesting recording paradigm where the sub-
jects freely discuss topics of their own interest and lead the

1. Successor to FEELtrace, https://sites.google.com/site/
roddycowie/work-resources

https://sites.google.com/site/roddycowie/work-resources
https://sites.google.com/site/roddycowie/work-resources
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TABLE 1: Summary of corpus available for estimation of arousal and valence from audiovisual data, featuring unscripted
interactive discourse. Information that is not available in the citation is indicated as ’NI’, short for ‘No Information’.

Dataset #Subjects # audio-
-visuals Annotation Duration Language(s) Elicitation YearTotal M F Age range

GENEVA [42] 112 55 45 20-60+ 112 NI NI

French
English

German/
northern Europe

Asia
Other

conversation 1997

SMARTKOM [43] 224 NI NI 16-45+ 466 NI 17 hours German HMI 2002

VAM-faces [6] 20 NI NI 16-69
70%<35 1421

Linkert-like scale (5
points from -1 to 1),
7–8 raters

12 hours German Talk-show 2008

SEMAINE [7] 150 57 93 NI 959 continuous,
Feel-trace, 7 raters 80 hours English HMI 2012

Belfast
naturalistic 2 125 31 94 NI 298

Continuous,
Feeltrace, 6–258
raters

86 minutes English Talk-show 2010

AVEC’13 [44] 292 NI NI 18-63 340 Continuous,
Feeltrace, 1 rater 240 hours German HMI 2013

Belfast induced
1 [45] 114 70 44 NI 570

Continuous,
Feeltrace, 6–258
raters

237 minutes English TV/interviews 2012

Belfast induced
2 [45] 82 37 45 NI 650

Valence only,
Continuous,
Feeltrace, 1 rater

458 minutes laboratory
based tests

CCDb [46] 16 12 4 25-56 30 NI 300 minutes English conversations 2013

RECOLA [13] 46 19 27 NI 46 Continuous,
Feeltrace, 7 raters 230 minutes French online

conversation 2013

AVEC’14 [47] 84 NI NI 18-63 300 Continuous,
Feeltrace, 3+ raters 240 hours German HMI 2014

MAHNOB
Mimicry [9] 60 31 29 NI 54 Continuous,

Feeltrace, ' 5 raters 11 hours English dyadic
conversations 2015

4D CCDb [48] 4 2 2 20-50 34 NI 17 minutes English conversation 2015

SEWA (this
work) 398 201 197 18-60+ 1990 Continuous,

Feeltrace, 5 raters 44 hours

Chinese
English

German
Greek

Hungarian
Serbian

Watching
videos –

Dyadic
conversations

2017

conversations themselves. They are not given any specific
task, nor a topic for conversation, nor any specific audiovi-
sual stimuli to elicit emotions. Both the databases contain
conversations only in English, each containing 30 and 6
conversations respectively. The gender split is quite skewed
with 12 male and only 4 female subjects. The dataset is
annotated in terms of Frontchannel (main speaker periods),
Backchannel (qualified utterances and expressions), agree-
ment/disagreement episodes, smiles, laughter, negative and
positive surprises, thinking phases, confusion, head mo-
tions, made using ELAN [50] framework.

The MAHNOB Mimicry [9] dataset features dyadic con-
versations where subjects engage in socio-political discus-
sions, or negotiate a tenancy agreement. The subjects span
range of nationalities including Spanish, French, Greek, En-
glish, Dutch, Portuguese,and Romanian. All conversations
were recorded in English. Subjects are 18 to 34 years old,
with 4.8 years of standard deviation. Continuous annota-
tions were obtained using FeelTrace by approximately 5
raters.

The Conflict Escalation Resolution (CONFER) [8] dataset

is constituted of 120 video clips of interactions between 54
subjects from Greek televised political debates. The data
was annotated by 10 experts in terms of continuous conflict
intensity.

2.4.2 Elicitation using Human-Machine Interfaces

The Sustained Emotionally coloured Machine-human Interaction
using Nonverbal Expression Dataset (SEMAINE) [7] presents
richly annotated recordings (7 basic emotion states, 6 types
of epistemic states, transcripts, laughs, head movement and
FACS) of interactions in laboratory conditions between a
human and a machine-like agent in three different Sensitive
Active Listener (SAL) scenarios. It features 150 participants,
most of which come from Caucasian background and 38 %
are male. The language of communication is predominantly
English.

The SMARTKOM dataset [43] features subjects inter-
acting in laboratory conditions, in German with a pre-
tense/WOZ multimodal dialogue system that supposedly
allows the user to interact almost naturally with a computer.
The recording sessions were first split into subject-state
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episodes by the labellers marking start and end of each per-
ceived episode. The segments were then labelled with the
following 7 categories: ‘joy/gratification’, ‘anger/irritation’,
‘helplessness’, ‘pondering/reflecting’, ‘surprise’, ‘neutral’
and ‘unidentifiable episodes’. Gender split is 20 male and
25 female speakers.

2.4.3 Elicitation through Tasks
The RECOLA [13] dataset contains multimodal recordings
of French students performing a collaborative task. The
participants discuss and rank 15 items in the order of their
significance for their survival in a remote and hostile region
in cold winter. The subjects are from different parts of
Switzerland, and thus have different cultural backgrounds
(33 French, 8 Italian, 4 German, 1 Portuguese). The database
however features French language alone, and mean age
of the subjects is 22 years with only 3 years of standard
deviation. Continuous levels of valence and arousal were
annotated by 7 raters using FeelTrace.

To collect Belfast Induced Natural Emotion Database [45],
English speaking participants were asked to perform select
set of tasks specifically designed to induce mild to moder-
ately strong emotionally coloured responses (e.g. reaching
into a box that sets off a very loud alarm). Mean age of
subjects is 24 years with 6 years of deviation. Continuous
values of valence and arousal were obtained for each clip
by 6 to 258 raters using FeelTrace.

The corpus for Audio-Visual Emotion recognition Chal-
lenges in 2013 and 2014, namely AVEC’13 [44] and AVEC’14
[47], used a subset of audio-visual depressive language cor-
pus (AViD-Corpus) which consists of recordings of subjects
performing human-computer interaction tasks, labelled by
23 annotators continuous for arousal and valence estimates.
The mean age of subjects is 31 years, with 6 years standard
deviation.

2.4.4 Corpus collected by segmenting existing recordings
Belfast Naturalistic Database 2 contains 10 to 60 seconds–
long audiovisuals taken from English television chat shows,
current affairs programmes and interviews. It features 125
subjects, of which 31 are male, and 94 are females. Out
of 298 clips, 100 videos totalling 86 minutes in duration
have been labelled with continuous-valued emotion labels
for activation and evaluation dimensions, with additionally
16 basic classifying emotion labels.

Similarly, Vera am Mittag (VAM) database [6] contains
12 hours of recordings of the German TV talk-show Vera
am Mittag (Vera at noon) with continuous-valued emotion
labels for arousal, valence, and dominance. It contains 20
participants with age ranging from 16 to 69.

The AFEW-VA database [39] is a visual dataset containing
600 challenging video clips extracted from feature films and
annotated per-frame in term of levels of valence and arousal,
as well as 68 facial landmarks. It contains 240 subjects, 50%
female, with age ranging from 8 to 76.

3 SEWA DATABASE

The main aim of the SEWA DB is to provide enough suitable
data of labelled examples to facilitate the development of

2. http://sspnet.eu/2010/02/belfast-naturalistic/

robust tools for automatic machine understanding of human
behaviour.

In particular, we recorded 6 groups of volunteers
(around 66 persons per group) from six different cultural
backgrounds: British, German, Hungarian, Greek, Serbian,
and Chinese. The volunteers in each group have a broad
distribution in gender and age. Specifically, there are at
least one native speakers each age group (18-29, 30-39, 40-
49, 50-59, and 60+) for each culture. The resulting database
contains a total of 199 sessions of experiment recordings:
1600 minutes of audio-visual data of people’s reaction to
adverts from 398 individuals, and 1057 minutes of recorded
computer-mediated face-to-face interactions between pairs
of subjects.

The SEWA database includes annotations of the record-
ings in terms of facial landmarks, facial action units, various
vocalisations, verbal cues, mirroring, and rapport, contin-
uously valued valence, arousal, liking, and prototypic ex-
amples (templates) of (dis)liking and sentiment. The data
has been annotated in an iterative fashion, starting with a
sufficient amount of examples to be annotated fully in a
semi-automated manner.

3.1 Data collection
To create the SEWA dataset, a data collection experiment has
been conducted. In this experiment, participants were di-
vided into pairs based on their cultural background, age and
gender. During initial sign-up, participants were asked to
complete a questionnaire of demographic measures includ-
ing gender, age, cultural background, education, personality
traits, and familiarity with the other person in the pair. To
promote natural interactions, participants within each pair
were required to know each other personally in advance
of the experiment. Each pair of the participants then took
part in two parts of the experiment, resulting in two sets of
recordings.

The SEWA data collection experiment was conducted
using a website specifically built for this task (shown in
Figure 3.4). The website (http://videochat.sewaproject.eu)
utilises WebRTC/OpenTok to facilitate the playing of ad-
verts, video-chat, and synchronized audio/video recording
using the microphone and webcam on the participants
own computer. This setup allowed the participants to be
recorded in truly unconstrained in-the-wild environments
with various lighting conditions, poses, background noise
levels, and sensor qualities.

Experimental Setup Part 1: Each participant was asked
to watch 4 adverts, each of being around 60 seconds long.
These adverts had been chosen to elicit mental states in-
cluding amusement, empathy, liking and boredom. For con-
sistent understanding of the advertisement content across
cultures, the advertisements chosen have no dialogues, but
are driven primarily by the visuals and the accompanying
music. The four advertisements 3 in order are:

1) A violent advertisement of the National Domestic
Violence Hotline –eliciting disgust, distress, and yet
the liking for the effectiveness of the advertisement,

3. These videos, including all subtitled versions prepared for subjects
of different cultural backgrounds, are included in our dataset for
referencing purposes.

http://sspnet.eu/2010/02/belfast-naturalistic/
http://videochat.sewaproject.eu
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Fig. 1: Front page of the online SEWA database and the
search filters.

2) A self-deprecating, witty advertisement of the Smart
Fortwo car –eliciting pleasure and liking for the
advertisement,

3) A bizarre, abstract advertisement of the Jean Paul
Gaultier Le Male Terrible perfume with a highly
blurred product emphasis, with illegible product
name in the visuals –eliciting confusion and a strong
disliking for the advertisement,

4) An advertisement of a touch-activated Grohe faucet
presenting use cases for the newly introduced
sensor-based activation feature, –eliciting interest
and liking for the product, and boredom for the
advertisement overall.

After watching the advert, the participant was also
asked to fill-in a questionnaire to self-report his/her
emotional state and sentiment toward the advert.

Experimental Setup Part 2: After watching the 4th
advert, the two participants were asked to discuss the
advert they had just watched by using the video-chat
function provided by the SEWA data collection website.
On average, the recorded conversation was 3 minutes long.
The discussion was intended to elicit further reactions and
opinions about the advert and the advertised product, such
as whether the advertised is to be purchased, whether it
is to be recommended to others, what are the best parts of
the advert, whether the advert is appropriate, how it can
be enhanced, etc.. After the discussion, each participant
was asked to fill-in a questionnaire to self-report his/her
emotional state and sentiment toward the discussion.

3.2 The Data Statistics and subject demographics
During the SEWA experiment, 198 recording sessions have
been successful, with a total of 398 subjects being recorded.
The subjects were coming from 6 different cultural back-
grounds: British, German, Hungarian, Serbian, Greek, and
Chinese. 201 of the participants are male, 197 are female,
resulting in a gender ratio (male / female) of 1.020. Fur-
thermore, the participants are categorized into 5 age groups:
18 29, 30 39, 40 49, 50 59 and 60+, with the 18 29 group being
most numerous. The detailed participant demographics are
shown in Table 2.

TABLE 2: SEWA Demographics

Cultures
Chinese English German Greek Hungarian Serbian

Gender Male 36 33 39 34 26 33
Female 34 33 25 22 44 39

Interactions
F–F 22 20 16 8 30 16
M–F 24 26 18 26 28 46
M–M 24 20 30 22 12 10

Age

18–29 44 34 41 18 44 22
30–39 16 12 13 29 9 15
40–49 4 6 1 1 5 8
50–59 6 8 5 8 5 14
60+ 0 6 4 0 7 13

Total 70 66 64 56 70 72

A total of 1990 audio-visual recording clips (5 clips per
subject: 4 recorded during the advert-watching part and 1
recorded during the video-chat part) were collected during
the experiment, comprising of 1600 minutes of audio-visual
data of people’s reaction to adverts and 1057 minutes of
video-chat recordings. Due to the wide spread of the partic-
ipants computers hardware capacity, the quality of the video
and audio recordings is not constant. Specifically, the spatial
resolution of the video recordings ranges from 320x240 to
640x360 pixels and the frame rate is between 20 and 30 fps.
The audio recordings sample rate is either 44.1 or 48 kHz.

3.3 Data annotation
The SEWA database contains annotations for facial
landmarks, (pre-computed) acoustic low-level descriptors
(LLDs) [51] [52], hand gestures, head gestures, facial action
units, verbal and vocal cues, continuously-valued valence,
arousal and liking / disliking (toward the advertisement),
template behaviours, episodes of agreement / disagree-
ment, and mimicry episodes.

Due to the large amount of raw data acquired from
the experiment, the annotation process has been conducted
iteratively, starting with sufficient amount of examples to be
annotated in a semi-automated manner and used to train
various feature extraction algorithms developed in SEWA.
Specifically, 538 short (10-30s) video-chat recording seg-
ments were manually selected to form the fully-annotated
basic SEWA dataset. These segments were selected based
on the subjects to the subjects emotional state of low / high
valance, low / high arousal, and liking / disliking. All 6
cultures were evenly represented in the basic SEWA dataset,
with approximately 90 segments selected from each culture
based on the consensus of at least 3 annotators from the
same culture.

3.3.1 Facial landmarks
Facial landmarks were annotated for all segments included
in the basic SEWA dataset using a 49-point mark-up, as
described in [53]. Manual annotation of facial landmarks
is highly labour intensive. Based on previous experience
[53], we know that trained annotators can only achieve a
sustained annotation speed of 30 frames per hour. Since
the basic SEWA dataset contains a total of 369974 video
frames, it would be impractical to annotate all of them
manually (which would require more than 12000 hours
of work). Therefore, the annotation was performed semi-
automatically.
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Fig. 2: Example of facial landmark annotation. The 49 facial
landmarks were annotated for all segments included in the
basic SEWA dataset.

Fig. 3: CED curves of the Chehra tracker [54] and the Dlib
tracker [57] on the manually corrected frames.

During the annotation process, we first applied the
Chehra facial landmark tracker [54] [55] on all video seg-
ments. Using a discriminative model trained by a cascade
of regressors, the tracker can construct personalised model
by incremental updating of the generic model. More than
95.1% of the tracking results (in 351875 frames) produced
by Chehra are accurate and require no further correction.
For the remaining 18099 frames, manual annotation was
performed in a similar way as in preparation of the 300VW
dataset [53] [56]. Specifically, we manually annotated 1
in every 8 frames and used the results to train a set of
person-specific trackers. These person-specific trackers were
applied to the rest of the frames to obtain the annotations. Fi-
nally, a visual inspection was performed on the annotations
and those deemed unsatisfactory were further corrected. An
example of the facial landmark annotation obtained from
this process is show in Figure 2.

3.3.2 Hand Gesture
Hand gestures were annotated for all video-chat recordings
in 5 frame steps. Five types of hand gestures were labelled:
hand not visible (89.08%), hand touching head (3.32%), hand
in static position (0.63%), display of hand gestures (2.39%),
and other hand movements (3.68%). Some examples of the
labelled frames are shown in Figure 4.

3.3.3 Head Gesture
Head gestures were annotated in terms of nod and shake
for all segments in the basic SEWA dataset. The annotation
was performed manually on a frame-by-frame basis. To
be able to provide good training examples for the head
nod/shake detector, we emphasised specifically on high

Fig. 4: Examples of hand gesture annotation.

Fig. 5: Examples of head nod (top row) and head shake
(bottom row) sequences.

precision during the annotation process. Specifically, only
un-ambiguous displays of head nod / shake were labelled.
In the end, a total of 282 head nod sequences and 122 head
shake sequences were identified. Examples of the labelled
head nod / shake sequences are shown in Figure 5

3.3.4 Transcript

We provide the audio transcript of all video-chat record-
ings. In addition to the verbal content, the transcript also
contains labels of certain non-verbal cues, such as sigh-
ing, coughing, laughter, etc. Utterances were transcribed
lexically, including markers for non-linguistic vocalizations
including laughs, ”back-channel” expressions of consent
and hesitation, rapid audible nasal exhalation (like in smirk
and snigger), and audible oral exhalations. To minimise
the efforts for transcription, semi-automatic methods such
as active learning were in an iterative fashion, starting
with existing modules for automatic speech recognition and
spotting of non- linguistic vocalisations [58] [59]. Since lex-
ical transcription does not require special training, crowd-
sourcing was used.
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Fig. 6: Examples of AU1 (inner brow raiser), AU2 (outer
brow raiser), AU4 (Brow lowerer), AU12 (Lip corner puller)
and AU17 (Chin raiser)

3.3.5 Facial Action Units annotation
Manual annotation of Action Units (AUs) has to be per-
formed by trained experts which is expansive and time
consuming. Especially due to the size of the SEWA database,
such manual annotation is prohibitive. Therefore, we focus
on accurate semi-automatic annotation of five AUs (1,2,4,12
and 17, depicted in Fig. 6). We selected these AUs as they are
occurring most in naturalistic settings, and are important for
high-level reasoning about sentiment.

We leverage the state-of-the-art method of [60] for de-
tection of AUs. Specifically, we employ publicly available
datasets (DISFA [61] and FERA2015 [62]), annotated in
terms of AU intensity, to train our models for sequence
modelling. This allows us to automatically obtain segments
where target AUs are active (intensity 6= 0) and non-active
(intensity=0). Although this allowed us to narrow down
the possible number of AU activations in target videos, the
annotation process could not be fully automated. This is
mainly because of a high number of false positives that can
occur in such obtained automated annotations of AUs due
to the training of target models being performed on videos
from different datasets, which can in some instances differ
significantly in lighting, head-pose and other conditions,
from the SEWA videos. Once the automatic annotation is
performed, several annotators have manually inspected the
obtained active segments of target AUs, defining the starting
and end frame of the AU within the segments classified as
active by the model.

We used this annotations to train the AU detector of 5
facial action units (AU) from the basic SEWA dataset: inner
eyebrow raiser (AU1, 109 examples), outer eyebrow raiser
(AU2, 79 examples), eyebrow lowerer (AU4, 94 examples),
lip corner puller (AU12, 104 examples), and chin raiser
(AU17, 61 examples). Similarity, the AU examples were
again identified in a semi-automatic manner. Specifically, we
first applied automatic AU detectors to the video segments
and manually removed all false-positives from the detection
results. Consequently, the AU annotation is not exhaustive,
meaning that some AU activations may be missed.

Using this semi-automatic approach, we annotated 500
sequences (150 frames each) containing at least one of
the 5 target AUs. We will refer to this dataset as SEWA
AU DATASET. For the baseline experiments, we split this
dataset in subject independent training, development and
test sets. The size of each dataset and for each AU are shown
in table 3.

The proposed method to semi-automatic AU detection
has been implemented into a standalone module (VSL-AU
detector) in C++/Matlab. This detector is then further inte-
grated into the SEWA back-end emotion recognition server
using the HCI2 Framework [63].

TABLE 3: Number of frames with active AUs in training,
test and validation set.

AU TR TE VA

1 5180 4340 5740
2 4060 3220 3920
4 4620 4340 4200

12 5600 4620 4340
17 3500 3080 2940

Total 22960 19600 21140

3.3.6 Valence, Arousal, and Liking/Disliking annotation

Continuously-valued valance, arousal and liking / disliking
(toward the advertisement) were annotated for all segments
in the basic SEWA dataset. In order to identify the subtle
changes in the subjects emotional state, annotators were
always hired from the same cultural background of the
recorded subjects. In addition, to reduce the effect of the
annotator bias, 5 annotators were recruited for each culture.
The annotation was performed using a custom-built tool,
which played the recordings while asked the annotators to
push / pull a joystick in real-time to indicate the subject’s
level of valence, arousal, or liking/disliking. The joystick’s
pitch value was then sampled at approximately 66 Hz
and saved as the annotation. To avoid cognitive overload
on the annotators, the three dimensions (valence, arousal
and liking / disliking) were annotated separately in three
passes. Furthermore, for each dimension, the segments were
annotated three times, first based on audio data only, then
based on video data only and finally based on audio-visual
data. An example of the continuous annotations obtained
with this process is illustrated in Fig. 7. Only the segments
where the subject on camera was speaking and his chat part-
ner silent were considered. Of the segments satisfying this
condition, 90 were selected for annotation so as to contain 15
segments for each of the following criteria: (a) high arousal,
(b) low arousal, (c) positive valence, (d) negative valence,
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Fig. 7: An example of the continuously valued annotation
results on valence, arousal and liking and disliking.

TABLE 4: Behaviour templates identified in the basic SEWA
dataset.

British German Hungarian Serbian Greek Chinese
Low Valence 2 4 2 6 2 3
High Valence 2 4 2 5 2 4
Low Arousal 2 3 2 2 2 2
High Arousal 2 3 2 6 2 4
Liking 2 4 2 6 2 5

(e) presence of liking and (f) presence of disliking. The latter
two 30 segments were continuously annotated for liking
and disliking while all 90 segments were fully annotated
for continuous valence and arousal.

These continuous annotations obtained are further com-
bined into one single ground-truth employing Canonical
Time Warping for each sequence to construct a subspace
were the annotations of all raters are maximally correlated
with each other and with the corresponding audio-visual
features. The ground-truth annotation is then derived from
the correlated subspace. More precisely, it is obtained by
keeping only the coefficient corresponding to the first com-
ponent each annotation. This is additionally normalised in
the continuous range [0, 1].

3.3.7 Behaviour Templates

Moreover, we identified behaviour templates –that is proto-
typical behaviours– for each culture when the subjects are in
the emotional state of low / high valence, low / high arousal
or showing liking / disliking toward the advertisement. For
each category, at least two examples were identified. Table
4 shows the exact distribution of the templates found in
the basic SEWA dataset. These templates can be used to
train and test the behaviour similarity detector. Figure. 8
illustrates some examples of these behaviour templates.

In addition to continuous values such as valence and
arousal, we extracted a number of episodes from the video-
chat recordings in which the pair of subjects were in low,
mid or high level of agreement / disagreement with each
other and annotated the level of agreement/disagreement.
The selections were based on the consensus of at least 3
annotators from the same culture of the recorded subjects.
The exact numbers of agreement / disagreement episodes

Fig. 8: Examples of behaviour templates identified from the
basic SEWA dataset.

TABLE 5: Agreement / disagreement episodes identified in
the video-chat recordings.

British German Hungarian Serbian Greek Chinese
Strong
Agreement

12 7 7 7 5 5

Moderate
Agreement

26 7 6 7 5 6

Weak
Agreement

29 7 6 7 5 6

Weak
Disagreement

7 6 5 4 5 4

Moderate
Disagreement

3 9 5 6 5 5

Strong
Disagreement

3 6 5 4 5 3

are shown in Table 5. Two examples of the agreement /
disagreement episodes are shown in Figure 9.

3.3.8 Mimicry Episodes
Lastly, 197 mimicry episodes (48 British, 31 German, 39
Hungarian, 20 Serbian, 41 Greek and 17 Chinese), in which
one subject mimicked the facial expression and / or head
gesture of the other subject, were identified from the video-
chat recordings. Two examples of the identified mimicry
episodes are shown in Figure 10.

3.4 Database availability

The SEWA database is available online at: http://db.
sewaproject.eu/. The web-portal provides a comprehensive
search filter (shown in Fig. ) allowing users to search for
specific recordings based on various criteria, such as de-
mographic data (gender, age, cultural background, etc.),
availability of certain types of annotation, and so on. This
will facilitate investigations during and beyond the project

http://db.sewaproject.eu/
http://db.sewaproject.eu/
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(a) Strong agreement (b) Strong disagreement

Fig. 9: Examples of agreement and disagreement episodes.

(a) Chinese culture (b) Hungarian culture

Fig. 10: Examples of the mimicry episodes.

in the field of machine analysis of facial behaviour as well
as in other research fields.

The SEWA database is made available to researchers for
academic-use only. To comply with clauses stated in the
Informed Consent signed by the recorded participants, all
non-academic/commercial uses of the data are prohibited.
Only researchers who signed the EULA will be granted
access to the database. In order to ensure secure transfer
of data from the database to an authorised users PC, the
data are protected by SSL (Secure Sockets Layer) with an
encryption key. If at any point, the administrators of the
SEWA database and/or SEWA researchers have a reason-
able doubt that an authorised user does not act in accor-
dance to the signed EULA, they will be declined the access
to the database.

4 BASELINE EXPERIMENTS

In this section, we introduce the experimental setting and
results for action unit detection, as well as valence, arousal
and liking/disliking estimation.

4.0.1 Methods
We performed experiments with three widely used and
established methods:

Support Vector Machine for Regression (SVR): We
used a Support Vector Machine for regression, a common
approach for affect estimation that has been widely used
as a baseline for valence and arousal estimation [64], [65],
[66] and to produce state-of-the-art results [67], [68]. In this
paper, we use the Scikit-Learn implementation [69] and a

linear kernel.

Tree-based The Random Forest Regressor (RF) was used
to produce the the second set of baseline results. It has been
shown to produce state-of-the-art results on a wide range
of problems [70] and especially for continuous emotion
recognition [71]. The scikit-learn [69] implementation of
random forests was used.

Long Short Term Memory Recurrent Neural Networks
(LSTM-RNN) : We utilize LSTM-RNN as our third baseline
method, owing to their popularity and their ability to
learn long-range contextual information for sequential
patterns [72], [73] and their successful application for
continuous emotion recognition [74], [75]. To implement
the LSTM-RNN models, we utilized the CURRENNT [76]
toolkit.

4.1 Feature extraction
In this section, we describe in detail the feature extraction
procedure. For video features, we used appearance-based
and geometric-based features. For audio features, low level
descriptors (LLDs) were used.

4.1.1 Appearance features
To model appearance, we used dense SIFT [77], which are
much more robust than raw pixels. After facial landmarks
have been detected, images are normalised in term of
similarity transformation (translation, scaling and rotation).
Dense SIFT features with 8-bins are then extracted from
patches of size 11x11 around each of the facial landmarks.
The resulting descriptors therefore encode both geometric
and appearance features. We reduced the dimensionality
of these feature vectors by applying Principle Component
Analysis (PCA). In particular, we kept the 300 first
component with the highest associated eigen-values to
obtain a lower-dimensionality subspace on which we then
project the appearance vectors to obtain a compact but
informative facial representation.

4.1.2 Geometric features
We also use geometric information directly obtained from
the detected facial landmarks (shape features). After varia-
tions due to translation, scaling and in-plane rotation have
been removed, the feature vector is then represented by the
coordinates [xk, yk] for k ∈ {1, ..., 49} of the facial land-
marks, stacked into a vector (x1, y1, · · · , x49, y49) ∈ (R)98.

In particular, our shape normalization follows the
approach [78], [79], [80] and leverages a linear shape
model built from images annotated with u = 68 fiducial
points. The annotated shapes are first normalized using
Procrustes Analysis to remove variations due to similarity
transformations (that is translation, rotation and scaling).
From these we then obtain the aligned mean shape s0. To
model similarity variations, we then explicitly construct 4
bases from s0 compactly represented as columns of Q2u×4.
Given a shape st ∈ R2u×1 a shape feature vector detected
at frame t, the similarity normalized features is then given
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by ssim = sy −QQT (sy − s0).

4.1.3 Audio features
We used the established [81] as our audio feature sets. For
each audio recording, we capture the acoustic LLDs with the
OPENSMILE toolkit [82] at a step size of 10ms. Specifically,
we extract frame-wise LLDs based on two different sets,
namely, the Interspeech 2013 Computational Para-linguistics
Challenge (COMPARE) set and the Geneva Minimalistic Acous-
tic Parameter Set (GEMAPS), detailed descriptions of which
will be given, respectively.

(COMPARE) consists of 6 373 acoustic features [51],
[83], [84]. It contains 65 LLDs, covering spectral, cepstral,
prosodic and voice quality information, which are sum-
marised in Table 6. From these LLDs extracted from each
frame (20ms − 60ms) of the audio signal, the first order
derivatives (deltas) are computed and then functionals, such
as, e. g., moments and percentiles, are applied to each frame-
level LLD and its delta coefficient over the whole audio
signal, to form the COMPARE feature set. In the feature
sets provided with the SEWA database, however, deltas and
functionals are not applied to enable the user to perform
time-continuous emotion recognition.

TABLE 6: INTERSPEECH 2013 Computational Paralinguis-
tics Challenge feature set. Overview of 65 acoustic low-level
descriptors (LLDs)

4 energy related LLD Group
Loudness Prosodic
Modulation loudness Prosodic
RMS energy, zero-crossing rate Prosodic
55 spectral related LLD Group
RASTA auditory bands 1-26 Spectral
MFCC 1-14 Cepstral
Spectral energy 250-650 Hz, 1-4 KHz Spectral
Spectral roll-off Pt. .25, .50, .75, .90 Spectral
Spectral flux, entropy, variance Spectral
Spectral skewness and kurtosis Spectral
Spectral slope Spectral
Spectral harmonicity Spectral
Spectral sharpness (auditory) Spectral
Spectral centroid (linear) Spectral
6 voicing related LLD Group
F0 via SHS Prosodic
Probability of voicing Voice quality
Jitter (local and delta) Voice quality
Shimmer Voice quality
Log harmonics-to-noise ratio Voice quality

The second acoustic feature set provided is based on
GEMAPS [52], a minimalistic expert-knowledge based fea-
ture set for the acoustic analysis of speaker states and traits.
Compared with large-scale sets, such as COMPARE, its main
aim is to reduce the risk of over-fitting in the training phase.
GEMAPS contains a compact set of 18 LLDs, covering
spectral, prosodic and voice quality information, cf. Table 7.
The LLDs were selected with respect to their capability to
describe affective physiological changes in voice produc-
tion.

For the baseline experiments, described next, the COM-
PARE LLDs were summarized over a block of 6 seconds
computing the mean and the standard deviation of each LLD

TABLE 7: Geneva Minimalistic Acoustic Parameter Set.
Overview of 18 acoustic low-level descriptors (LLDs)

6 frequency related LLD Group
Pitch Prosodic
Jitter Voice quality
Formant 1, 2, 3 frequency Voice quality
Formant 1 bandwidth Voice quality
3 energy related LLD Group
Shimmer Voice quality
Loudness Prosodic
Harmonics-to-Noise ratio Voice quality
9 spectral related LLD Group
α ratio Spectral
Hammarberg Index Spectral
Spectral slope 0-500 Hz and 500-1500Hz Spectral
Formant 1, 2, 3 relative energy Voice quality
Harmonic difference H1-H2, H1-A3 Voice quality

resulting in a feature vector of dimension 130. This is done
as a single LLD frame does not convey meaningful informa-
tion about the affective state of a speaker. Using COMPARE
only is justified by the fact that the LLDs in the EGEMAPS
set are mostly redundant and the results achieved are not
superior on average [52].

4.2 Experimental setting

Extensive baseline experiments were conducted in two dif-
ferent settings:

Multi-culture, person independent experiment –coined
multi–: This is the generic context in which we perform
experiments on all cultures mixed (i. e., training and testing
on all cultures) but in a person-independent way.

Culture independent –coined C1, · · · , C6: The goal
of this setting is to test performance in a culture-specific
manner (English, German, Hungarian, etc.). In this case,
for each culture, the data of that culture was divided into
person independent training, validation and testing sets.

In both cases, we ensured that the split of the data
was person-independent by manually dividing the data into
subject-independent training, development, and test parti-
tions with a 3:1:1 ratio. All partitions were balanced with
respect to age, gender and the criteria after that the segments
have been selected, to make sure that we do not end up, e. g.
in too many segments of liking in the training partition and
in only segments of disliking in the test partition.

For each experiment, we optimised the model parame-
ters by performing a grid-search on the development set to
find the best setting of the regularization parameter C for
the SVR and number of trees n for the Random Forest, and
report results on the testing set.

4.2.1 Performance measure

The problem of AU detection is a classification one while
that of valence, arousal and liking/disliking level estimation
is a regression one, mandating different error measures.
Given a ground-truth and a prediction, for Action Units,
we measure performance with the F1 score. The f1 score is
defined as:

f1 = 2 · precision · recall
precision + recall

(1)
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This score is widely used for AU-detection and classi-
fication of facial expressions of emotions [41], [60] because
of its robustness to the imbalance in positive and negative
samples, which is very common in the case of AUs.

For valence, arousal and liking/disliking, performance
is measured using the Pearson product-moment correlation
coefficient (CORR), which is the standard measures used for
measuring valence and arousal estimation accuracy [19]. We
also report the Concordance Correlation Coefficient (CCC),
recently used in the last AVEC competitions [66], [85].

The correlation coefficient (CORR) is defined as follows.
Let θ be a series of n ground-truth labels, n ∈ N and θ̂ a
series of n corresponding prediction labels.

CORR(θ̂, θ) =
COV(θ̂, θ)

σθ̂σθ
=
E[(θ̂ − µθ̂)(θ − µθ)]

σθ̂σθ
(2)

Finally, the concordance correlation coefficient (CCC) is
defined as:

CCC(θ̂, θ) =
2× COV(θ̂, θ)

σ2
θ̂
+ σ2

θ + (µθ̂ − µθ)2
,=

2E[(θ̂ − µθ̂)(θ − µθ)]
σ2
θ̂
+ σ2

θ + (µθ̂ − µθ)2
,

(3)

4.3 Experimental results
Here we present the experimental results for action unit de-
tection and valence, arousal and liking/disliking estimation.

4.3.1 Action unit detection
We used the SVM and the Random Forest for AU detection
using geometric and appearance features and feature fusion
as described in section 4.1. The results in terms of F1-score
for per-frame detection are shown in Table 8 on the test
set, and in Table 9 on the development set. The tables
show that the AU detector perform well, but clearly not
good enough for AU detection in a fully automatic manner.
AU 12 has the highest F1-score (0.618) with feature fusion
and SVM classifier. These results demonstrate again that
it is important to use both types of features, texture and
appearance, to achieve superior results. In particular, and in
line with previous research, the average results achieved by
landmarks are higher than those by texture features which
confirms the representative power of geometric features.
In comparison to the baseline results with those in the
FERA2015 [62] database, our results obtained here are lower
on the overlapping AUs (10 and 17). This is mainly because
the SEWA dataset contains facial expressions recorded in
different contexts and in the wild, while the FERA2015
recordings are made in an controlled environment or labora-
tory with controlled noise level, illumination and calibrated
cameras.

4.4 Estimation of valence, arousal and liking/disliking
The setting of our baseline experiment allows us to inves-
tigate the effect of audio, video and the fusion of both on
the results. In addition, we are able to separate the effect
of culture on the results. As annotations were performed
separately but by the same annotators on the audio, video
and audio-video feeds respectively, we are also able to infer

TABLE 8: F1-score for AU detection on the test partition

Landmarks SIFT Fusion
AU SVM RF SVM RF SVM RF

1 0.401 0.285 0.512 0.265 0.514 0.272
2 0.323 0.415 0.300 0.211 0.293 0.275
4 0.409 0.123 0.345 0.265 0.345 0.183

12 0.513 0.492 0.518 0.321 0.613 0.421
17 0.361 0.068 0.303 0.177 0.302 0.247
av 0.385 0.251 0.378 0.226 0.407 0.271

TABLE 9: F1-score for AU detection on the development
partition

Landmarks SIFT Fusion
AU SVM RF SVM RF SVM RF

1 0.345 0.198 0.477 0.161 0.479 0.301
2 0.583 0.470 0.406 0.276 0.404 0.271
4 0.405 0.255 0.461 0.290 0.460 0.289

12 0.533 0.421 0.588 0.413 0.618 0.431
17 0.419 0.282 0.271 0.297 0.271 0.246
av 0.432 0.296 0.417 0.261 0.429 0.290

the human-level-performance of recognizing the levels of
valence and arousal displayed by a subject given each type
of information. Results are reported in term of CORR in
Table. Table.11 and in term of CCC in Table.10 .

Results show that, for valence, we obtained better re-
sults on annotation obtained using exclusively video. These
results are slightly lower when using labels obtained by an-
notating audio-video, while the worst results were obtained
on the labels collected from the audio feed only. This is in
line with the recent finding by psychologists that valence is
much better estimated from video imagery than from audio
only, while arousal is much better predicted from audio than
from video [86], [87]. As expected, using a fusion of audio-
video features increases the results, while audio features
are the least helpful, supporting the theory that the face
and its deformation is the main medium of communication
between humans when it comes to emotions.

On a model level, we observe that performances of
different regression models vary from each other and that,
overall, SVM performs better than RF which in turn out-
performs LSTM. However, perhaps surprisingly, in the ex-
periments on audio features, while Support Vector Machine
for Regression (SVR) and Random Forest (RF) are expected
to perform well for arousal and valence prediction, Long
Short-Term Memory Recurrent Neural Network (LSTM-
RNN) noticeably outperform them for liking/disliking pre-
diction. For example, while the average CCC of liking
prediction based on audio features and A+V annotations is
0.194 and 0.087 by SVR and RF, respectively, a CCC of 0.254
is achieved with LSTM.

Still when it comes to audio features, in most cases,
arousal is better predicted than valence, which conforms
repeated findings in the literature [66], [67], [68]. Con-
versely, when using video features, valence seems to be
more accurately predicted than arousal. These observation
would confirm that acoustic features are more informative
for arousal while valence can result in more subtle facial
expressions requiring geometric and appearance features to
be predicted accurately.

However, for liking or disliking, there is no such notice-
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Valence Arousal Liking/Disliking
Method Feature Annotation: A V AV A V AV A V AV

SVM A C1 0.132 0.170 −0.070 0.288 0.282 0.193 0.301 0.008 −0.072
C2 0.013 0.396 0.193 0.611 −0.002 0.083 0.104 0.178 0.224
C3 0.251 0.087 0.116 0.619 0.545 0.694 −0.119 −0.100 0.002
C4 −0.069 0.149 −0.002 0.101 −0.222 0.043 0.496 0.132 0.640
C5 −0.106 0.398 0.109 0.067 0.243 0.352 0.279 0.141 0.046
C6 0.027 0.209 0.230 0.488 0.494 0.402 −0.253 0.186 0.287

multi 0.123 0.297 0.196 0.427 0.351 0.263 0.144 0.228 0.229
avr. 0.053 0.244 0.110 0.372 0.242 0.290 0.136 0.110 0.194

V C1 0.193 0.427 0.294 0.097 0.228 0.228 0.163 0.299 0.342
C2 0.238 0.154 0.203 0.174 0.457 0.337 0.080 −0.060 0.188
C3 −0.081 0.278 0.215 0.055 0.386 0.193 0.101 0.417 0.027
C4 0.005 0.301 0.376 0.244 0.236 0.376 0.231 0.165 0.390
C5 0.155 0.495 0.252 0.019 0.271 0.150 0.494 0.170 0.406
C6 0.038 0.264 0.171 0.099 0.268 0.297 0.004 0.325 −0.036

multi 0.195 0.312 0.194 0.249 0.202 0.172 0.117 0.154 0.048
avr. 0.106 0.319 0.244 0.134 0.293 0.250 0.170 0.210 0.195

AV C1 0.268 0.445 0.305 0.116 0.224 0.255 0.188 0.436 0.268
C2 0.215 0.184 0.264 0.166 0.501 0.405 0.076 −0.096 0.231
C3 0.057 0.359 0.284 0.100 0.448 0.296 0.195 0.374 0.112
C4 0.063 0.282 0.320 0.198 0.183 0.179 0.055 0.254 0.341
C5 0.188 0.468 0.236 0.095 0.261 0.217 0.452 0.165 0.406
C6 −0.020 0.296 0.212 0.035 0.229 0.190 0.242 0.294 −0.050

multi 0.171 0.326 0.199 0.267 0.164 0.175 0.103 0.148 0.054
avr. 0.135 0.337 0.260 0.140 0.287 0.245 0.187 0.225 0.195

RF A C1 0.203 0.116 0.018 0.341 0.169 0.235 0.264 −0.070 0.004
C2 0.060 0.117 −0.037 −0.023 0.433 −0.141 −0.029 0.184 0.007
C3 0.165 0.054 0.105 0.665 0.388 0.531 −0.191 −0.066 0.069
C4 −0.130 −0.175 −0.017 0.067 0.054 0.090 0.303 −0.016 0.182
C5 0.002 0.154 0.206 0.007 0.217 0.062 0.055 0.111 0.203
C6 0.115 0.238 0.155 0.560 0.370 0.363 0.002 0.106 0.088

multi 0.104 0.156 0.078 0.294 0.288 0.223 0.078 0.121 0.059
avr. 0.074 0.094 0.073 0.273 0.274 0.195 0.069 0.053 0.087

V C1 0.002 0.366 0.151 0.104 0.123 0.166 0.324 0.109 0.319
C2 0.115 −0.007 0.099 0.127 0.511 0.204 0.156 −0.042 −0.070
C3 0.123 0.238 0.177 0.129 0.104 0.255 −0.078 0.021 0.158
C4 0.047 0.387 0.324 0.050 0.234 0.193 0.185 0.027 0.304
C5 0.037 0.259 0.129 −0.016 0.265 0.134 0.114 −0.093 −0.035
C6 0.162 0.358 0.396 0.077 0.174 0.139 0.078 0.247 0.075

multi 0.034 0.207 0.192 0.047 0.123 0.127 −0.023 0.062 0.077
avr. 0.074 0.258 0.210 0.074 0.219 0.174 0.108 0.047 0.118

AV C1 0.135 0.358 0.091 0.027 0.225 0.056 0.347 0.293 0.376
C2 0.064 0.126 0.133 0.145 0.355 0.158 −0.064 0.136 −0.081
C3 0.064 0.193 0.226 0.056 0.120 0.115 −0.029 0.177 0.083
C4 0.058 0.374 0.256 0.084 0.152 0.162 0.130 0.045 0.347
C5 0.043 0.262 0.119 0.052 0.241 0.079 0.109 −0.133 −0.121
C6 0.103 0.360 0.335 0.028 0.173 0.089 0.078 0.272 0.032

multi 0.023 0.220 0.137 0.043 0.143 0.125 −0.065 0.113 0.071
avr. 0.070 0.270 0.185 0.062 0.201 0.112 0.072 0.129 0.101

LSTM A C1 0.165 0.135 0.120 0.347 0.099 0.321 0.415 0.206 0.269
C2 0.317 0.188 0.216 0.212 0.072 0.253 0.222 0.146 0.164
C3 0.249 0.152 0.226 0.669 0.298 0.540 0.108 0.118 0.404
C4 0.132 0.251 0.300 0.120 0.110 0.210 0.173 0.149 0.295
C5 0.121 0.381 0.279 0.116 0.115 0.239 0.349 0.324 0.407
C6 0.238 0.326 0.304 0.500 0.532 0.616 0.219 0.141 0.087

multi 0.118 0.212 0.082 0.346 0.296 0.234 0.215 0.206 0.151
avr. 0.192 0.235 0.218 0.330 0.218 0.344 0.243 0.184 0.254

V C1 0.076 0.112 0.074 0.106 0.180 0.112 0.197 0.146 0.243
C2 0.167 0.084 0.151 0.221 0.106 0.125 0.248 0.052 0.144
C3 0.116 0.168 0.190 0.171 0.187 0.240 0.055 0.252 0.136
C4 0.109 0.010 0.081 0.083 0.120 0.192 0.169 0.096 −0.022
C5 0.212 0.325 0.171 0.225 0.243 0.254 0.251 0.256 0.259
C6 0.295 0.245 0.158 0.199 0.137 0.204 0.107 0.129 0.241

multi 0.091 0.281 0.153 0.115 0.115 0.119 0.164 0.076 0.086
avr. 0.152 0.175 0.140 0.160 0.155 0.178 0.170 0.144 0.155

AV C1 0.236 0.238 0.231 0.244 0.238 0.195 0.181 0.114 0.172
C2 −0.008 0.128 0.067 0.093 0.172 0.187 0.003 0.015 −0.000
C3 0.202 0.160 0.232 0.168 0.128 0.128 −0.036 0.120 0.270
C4 0.107 0.056 0.138 0.122 0.141 0.186 0.095 0.026 0.055
C5 0.101 0.241 0.243 0.111 0.105 0.251 0.153 0.179 0.201
C6 0.093 0.140 0.254 0.178 0.221 0.287 0.234 0.064 0.120

multi 0.119 0.228 0.195 0.167 0.112 0.162 0.095 0.064 0.065
avr. 0.121 0.170 0.194 0.155 0.160 0.199 0.103 0.083 0.126

TABLE 10: Results in term of CCC for valence, arousal and liking/disliking
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Valence Arousal Liking/Disliking
Method Feature Annotation: A V AV A V AV A V AV

SVM A C1 0.139 0.177 −0.078 0.336 0.305 0.218 0.420 −0.012 −0.012
C2 −0.178 0.464 −0.161 0.628 −0.002 0.035 0.049 0.217 −0.205
C3 0.401 0.089 0.139 0.671 0.523 0.688 0.010 0.306 0.167
C4 −0.071 −0.168 −0.004 0.299 −0.085 0.199 0.625 0.186 0.641
C5 −0.118 0.557 0.051 0.367 0.433 0.396 0.351 0.547 0.198
C6 −0.023 0.262 0.330 0.695 0.536 0.533 0.003 0.151 0.103

multi 0.165 0.332 0.251 0.370 0.362 0.259 0.171 0.247 0.280
avr. 0.045 0.245 0.075 0.481 0.296 0.333 0.233 0.235 0.167

V C1 0.197 0.433 0.347 0.097 0.272 0.266 0.201 0.333 0.397
C2 0.231 0.189 0.222 0.235 0.460 0.444 0.051 −0.069 0.179
C3 −0.059 0.334 0.229 −0.008 0.443 0.229 0.117 0.542 0.034
C4 0.182 0.403 0.463 0.338 0.349 0.254 0.140 0.236 0.432
C5 0.167 0.470 0.301 0.022 0.289 0.220 0.570 0.208 0.408
C6 0.173 0.389 0.319 0.102 0.348 0.235 0.001 0.431 0.027

multi 0.171 0.321 0.266 0.281 0.182 0.209 0.132 0.134 0.024
avr. 0.152 0.363 0.307 0.152 0.335 0.265 0.173 0.259 0.214

AV C1 0.266 0.463 0.325 0.118 0.308 0.318 0.232 0.430 0.477
C2 0.247 0.109 0.239 0.222 0.423 0.351 0.081 −0.107 0.160
C3 −0.137 0.407 0.317 0.130 0.437 0.273 0.229 0.467 0.122
C4 −0.064 0.392 0.434 0.327 0.355 0.325 0.206 0.319 0.383
C5 0.186 0.489 0.370 0.097 0.258 0.290 0.500 0.185 0.432
C6 0.062 0.270 0.120 0.032 0.280 0.231 0.102 0.411 0.050

multi 0.203 0.333 0.268 0.282 0.171 0.169 0.192 0.157 0.057
avr. 0.109 0.352 0.296 0.173 0.319 0.280 0.220 0.266 0.240

RF A C1 0.289 0.162 0.025 0.387 0.242 0.334 0.519 −0.107 0.008
C2 0.156 0.134 −0.112 −0.044 0.562 −0.384 −0.060 0.385 0.013
C3 0.328 0.079 0.166 0.772 0.492 0.647 −0.424 −0.214 0.102
C4 −0.180 −0.324 −0.087 0.135 0.123 0.180 0.523 −0.022 0.454
C5 0.006 0.502 0.378 0.030 0.472 0.139 0.199 0.375 0.662
C6 0.171 0.341 0.287 0.682 0.556 0.573 0.003 0.156 0.154

multi 0.227 0.268 0.140 0.399 0.411 0.312 0.168 0.198 0.116
avr. 0.142 0.166 0.114 0.337 0.408 0.257 0.133 0.110 0.216

V C1 0.139 0.392 0.266 0.144 0.138 0.094 0.346 0.090 0.526
C2 0.128 0.049 0.158 0.241 0.512 0.268 0.259 −0.093 −0.054
C3 0.205 0.301 0.278 0.178 0.136 0.294 0.050 −0.124 0.255
C4 0.127 0.393 0.358 0.024 0.315 0.148 0.415 −0.137 0.393
C5 0.110 0.336 0.239 −0.075 0.261 0.145 0.142 −0.237 0.033
C6 0.104 0.375 0.455 0.054 0.219 0.213 0.240 0.316 0.081

multi 0.081 0.268 0.227 0.077 0.140 0.181 0.056 0.155 0.050
avr. 0.128 0.302 0.283 0.092 0.246 0.192 0.215 −0.004 0.183

AV C1 0.226 0.457 0.090 0.059 0.251 0.173 0.261 0.356 0.505
C2 0.107 0.188 0.212 0.211 0.460 0.222 −0.111 0.079 0.062
C3 0.098 0.303 0.233 0.175 0.157 0.191 −0.124 0.227 0.055
C4 0.042 0.341 0.353 0.137 0.219 0.183 0.239 0.053 0.475
C5 0.162 0.318 0.177 −0.029 0.399 0.218 0.121 0.123 −0.182
C6 0.110 0.416 0.380 0.102 0.223 0.149 0.144 0.343 0.128

multi 0.028 0.243 0.201 0.097 0.164 0.197 0.040 0.147 0.113
avr. 0.110 0.324 0.235 0.107 0.268 0.190 0.081 0.190 0.165

LSTM A C1 0.197 0.144 0.125 0.390 0.115 0.346 0.518 0.221 0.296
C2 0.331 0.377 0.348 0.345 0.115 0.462 0.453 0.347 0.385
C3 0.306 0.159 0.258 0.680 0.304 0.569 0.299 0.190 0.560
C4 0.136 0.318 0.354 0.162 0.135 0.276 0.220 0.206 0.350
C5 0.142 0.525 0.288 0.227 0.158 0.282 0.463 0.492 0.501
C6 0.328 0.365 0.307 0.649 0.661 0.672 0.303 0.158 0.123

multi 0.154 0.221 0.101 0.400 0.346 0.285 0.243 0.225 0.200
avr. 0.228 0.301 0.254 0.408 0.262 0.413 0.357 0.263 0.345

V C1 0.105 0.137 0.094 0.138 0.236 0.139 0.238 0.153 0.260
C2 0.403 0.119 0.274 0.259 0.115 0.162 0.389 0.107 0.467
C3 0.143 0.188 0.227 0.208 0.190 0.308 0.097 0.258 0.218
C4 0.155 0.013 0.103 0.125 0.185 0.271 0.228 0.135 −0.035
C5 0.235 0.384 0.188 0.237 0.269 0.383 0.254 0.485 0.261
C6 0.338 0.310 0.195 0.321 0.150 0.275 0.139 0.145 0.285

multi 0.135 0.322 0.187 0.140 0.148 0.173 0.186 0.110 0.105
avr. 0.216 0.210 0.181 0.204 0.185 0.244 0.219 0.199 0.223

AV C1 0.329 0.293 0.286 0.250 0.330 0.239 0.195 0.132 0.178
C2 −0.014 0.134 0.158 0.104 0.193 0.251 0.007 0.036 −0.001
C3 0.207 0.218 0.266 0.200 0.136 0.147 −0.038 0.129 0.272
C4 0.144 0.070 0.189 0.158 0.175 0.223 0.113 0.029 0.090
C5 0.157 0.286 0.273 0.138 0.114 0.303 0.205 0.277 0.266
C6 0.093 0.202 0.254 0.268 0.257 0.352 0.257 0.064 0.132

multi 0.150 0.252 0.232 0.187 0.135 0.202 0.127 0.079 0.099
avr. 0.152 0.208 0.237 0.187 0.191 0.245 0.124 0.106 0.148

TABLE 11: Results in term of PCC for valence, arousal and liking/disliking
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able tendency. In most cases, as can be seen from the table,
the performance for liking or disliking is lower than for
arousal and valence. This could be mainly because the pre-
diction of liking and disliking is more content-related and
could not obtain sufficient useful information via acoustic
cues only, lacking linguistic cues.

Moreover, regarding the three different types of an-
notations, we also note that, in most cases the best per-
formance in terms of CCC was obtained by audio-based
annotations for arousal and by video-based ones for valence,
respectively, while no obvious performance improvement
was seen when the combination of audio and video was
provided during annotations. However, for liking or dislik-
ing, in many cases the best results of prediction of liking
were achieved when the audio/video-based annotations
were utilised. This may be because prediction of liking or
disliking is a quite complex problem which is difficult to
address with limited data. It could be improved when more
data with information of multiple modalities is given.

Using video features, culture 5 (Hungarian) is best pre-
dicted (with a CCC of 0.495) for valence using SVR. Inter-
estingly, this same culture is also best predicted for valence
using audio features (CCC 0.398), again with SVR based
on audio features but video-based annotation. For arousal
and using audio features only, regarding the six different
cultures, the performance in term of CCC (0.694) is obtained
for culture 3 (German) with SVR on audio/video-based
annotations. In contrast, using a fusion of audio and video
features, best results are obtained for arousal on culture 2
with a CCC of 0.501.

It is interesting to notice that, considering experiments
of SVR, predictions of valence with video-based annotations
outperforms that with audio-based annotations for all cul-
tures except for culture 3 (German). Similarly, predictions
of arousal with audio-based labels outperforms that with
video-based labels for all cultures except for culture 5 (Hun-
garian) and 6 (Serbian). Such a contrast could be mainly
due to the close connection between the two dimensions in
spontaneous conversation. Therefore, it might be good to
predict them together, i. e., conducting multi-task learning
to take advantage of the interconnections between the two
different aspects.

5 CONCLUSION

We introduced the SEWA database (SEWA DB), a multilin-
gual dataset of annotated facial, vocal and verbal behaviour
recordings made in-the-wild. In addition to providing train-
ing data for the technologies developed during the SEWA
projects, the SEWA DB has also been made publicly avail-
able to the research community, representing a benchmark
for efforts in automatic analysis of audio-visual behaviour
in the wild. The SEWA DB contains the recordings of 204
experiment sessions, covering 408 subjects recruited from 6
different cultural backgrounds: British, German, Hungarian,
Greek, Serbian, and Chinese. The database includes a total
of 1525 minutes of audio-visual recordings of the subjects
reaction to the 4 advertisement stimuli and 568 minutes
of video-chat recordings of the subjects discussing the ad-
vertisement. In addition to the raw audio and video data,
the SEWA DB also contains a wide range of annotations

including: low-level audio descriptor (LLD) features, facial
landmark locations, hand-gesture, head gesture, facial ac-
tion units, audio transcript, continuously-valued valence,
arousal and liking / disliking (toward the advertisement),
template behaviours, agreement / disagreement episodes,
and mimicry episodes.

We provide exhaustive baseline experiments to as-
sess Action Unit detection and valence, arousal and lik-
ing/disliking prediction, which is both helpful in advancing
the field of affect estimation and will help advance the state-
of-the art by providing a comparison benchmark.

We believe this large corpus will be helpful to the
community, both in the psychological field in helping test
hypothesis and in the computer science field to advance the
state of automatic sentiment analysis in the wild.
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