

TensorLy: Tensor Learning in

Jean Kossaifi, Yannis Panagakis, Anima Anandkumar and Maja Pantic

High level API for tensor method and deep tensorized architectures

Tensor decomposition

Tensor regression

Tensor + Deep

Basic tensor operations

Kronecker \otimes , Khatri-Rao \odot , unfolding $\mathbf{X}_{[n]}, vec(\hat{\mathcal{X}}), n$ -mode product, \cdots

Unified backend

- Flexibly backend system
- Easily extensible
- Consistent, clear, documented API tensors are NumPy arrays or PyTorch tensors
- Tested and optimized
- BSD-licensed: suitable for industry & academia

https://github.com/tensorly/tensorly

ADI and dee . topook

API and doc: <u>tensorly.org/dev</u>

Tensor algebra, decomposition and regression

- CANDECOMP-PARAFAC decomposition
- Non-negative and randomised CP
- Tucker decomposition (Higher-Order SVD)
- Non-negative Tucker
- Matrix-Product-State (Tensor-Train)
- Robust Tensor PCA
- Tensor ridge regression (Tucker and Kruskal)

Decomposing a 1-billion element tensor

Deep tensorized architectures

- Speeding up convolutions with tensor decomposition
- Tensor contraction and regression networks, ...

ResNet-101+TRL on ImageNet 90 85 75 70 Top-1 accuracy Top-5 accuracy 0 20 40 60 80 100 Space savings (in %)